Computing the Multicover Bifiltration
Given a finite set A ⊂ R d , let Cov r , k denote the set of all points within distance r to at least k points of A . Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration . Motivated by the problem of...
Saved in:
Published in | Discrete & computational geometry Vol. 70; no. 2; pp. 376 - 405 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0179-5376 1432-0444 1432-0444 |
DOI | 10.1007/s00454-022-00476-8 |
Cover
Summary: | Given a finite set
A
⊂
R
d
, let
Cov
r
,
k
denote the set of all points within distance
r
to at least
k
points of
A
. Allowing
r
and
k
to vary, we obtain a 2-parameter family of spaces that grow larger when
r
increases or
k
decreases, called the
multicover bifiltration
. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the
rhomboid tiling
of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Editor in Charge: Kenneth Clarkson |
ISSN: | 0179-5376 1432-0444 1432-0444 |
DOI: | 10.1007/s00454-022-00476-8 |