GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness

Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with sig...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 40; pp. e1801900 - n/a
Main Authors Giménez‐Marqués, Mónica, Bellido, Elena, Berthelot, Thomas, Simón‐Yarza, Teresa, Hidalgo, Tania, Simón‐Vázquez, Rosana, González‐Fernández, África, Avila, José, Asensio, Maria Carmen, Gref, Ruxandra, Couvreur, Patrick, Serre, Christian, Horcajada, Patricia
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2018
Wiley-VCH Verlag
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.201801900

Cover

Abstract Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL‐100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high‐resolution soft X‐ray spectroscopy. Finally, a cell penetration study using the radio‐labeled antitumor agent gemcitabine monophosphate (3H‐GMP)‐loaded MIL‐100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness. A green and highly selective general GraftFast method is reported for the successful attachment of biopolymers on the external surface of nanometric metal–organic frameworks. PEGylated MIL‐100(Fe) nanoparticles exhibit superior chemical and colloidal stability, allowing the adsorption of bioactive molecules. A cell penetration study using the antitumor agent gemcitabine monophosphate‐loaded MIL‐100(Fe)@polyethylene glycol (PEG) confirms a significant in vitro PEG furtiveness.
AbstractList Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF-PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate ( H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.
Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (3H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.
Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL‐100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high‐resolution soft X‐ray spectroscopy. Finally, a cell penetration study using the radio‐labeled antitumor agent gemcitabine monophosphate ( 3 H‐GMP)‐loaded MIL‐100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.
Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF-PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (3 H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF-PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (3 H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.
Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL‐100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high‐resolution soft X‐ray spectroscopy. Finally, a cell penetration study using the radio‐labeled antitumor agent gemcitabine monophosphate (3H‐GMP)‐loaded MIL‐100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness. A green and highly selective general GraftFast method is reported for the successful attachment of biopolymers on the external surface of nanometric metal–organic frameworks. PEGylated MIL‐100(Fe) nanoparticles exhibit superior chemical and colloidal stability, allowing the adsorption of bioactive molecules. A cell penetration study using the antitumor agent gemcitabine monophosphate‐loaded MIL‐100(Fe)@polyethylene glycol (PEG) confirms a significant in vitro PEG furtiveness.
Author Giménez‐Marqués, Mónica
Hidalgo, Tania
Horcajada, Patricia
Couvreur, Patrick
Avila, José
Asensio, Maria Carmen
Berthelot, Thomas
Simón‐Vázquez, Rosana
González‐Fernández, África
Simón‐Yarza, Teresa
Gref, Ruxandra
Bellido, Elena
Serre, Christian
Author_xml – sequence: 1
  givenname: Mónica
  orcidid: 0000-0002-4931-5711
  surname: Giménez‐Marqués
  fullname: Giménez‐Marqués, Mónica
  email: monica.gimenez-marques@uv.es
  organization: PSL Research University
– sequence: 2
  givenname: Elena
  surname: Bellido
  fullname: Bellido, Elena
  organization: Université Paris‐Saclay
– sequence: 3
  givenname: Thomas
  surname: Berthelot
  fullname: Berthelot, Thomas
  organization: CEA Saclay
– sequence: 4
  givenname: Teresa
  surname: Simón‐Yarza
  fullname: Simón‐Yarza, Teresa
  organization: Université Paris‐Saclay
– sequence: 5
  givenname: Tania
  surname: Hidalgo
  fullname: Hidalgo, Tania
  organization: Université Paris‐Saclay
– sequence: 6
  givenname: Rosana
  surname: Simón‐Vázquez
  fullname: Simón‐Vázquez, Rosana
  organization: Campus Lagoas Marcosende
– sequence: 7
  givenname: África
  surname: González‐Fernández
  fullname: González‐Fernández, África
  organization: Campus Lagoas Marcosende
– sequence: 8
  givenname: José
  surname: Avila
  fullname: Avila, José
  organization: L'Orme des Merisiers
– sequence: 9
  givenname: Maria Carmen
  surname: Asensio
  fullname: Asensio, Maria Carmen
  organization: L'Orme des Merisiers
– sequence: 10
  givenname: Ruxandra
  surname: Gref
  fullname: Gref, Ruxandra
  organization: UMR CNRS 8214
– sequence: 11
  givenname: Patrick
  surname: Couvreur
  fullname: Couvreur, Patrick
  organization: Université Paris Saclay
– sequence: 12
  givenname: Christian
  surname: Serre
  fullname: Serre, Christian
  organization: PSL Research University
– sequence: 13
  givenname: Patricia
  orcidid: 0000-0002-6544-5911
  surname: Horcajada
  fullname: Horcajada, Patricia
  email: patricia.horcajada@imdea.org
  organization: Advanced Porous Materials Unit, IMDEA Energy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30091524$$D View this record in MEDLINE/PubMed
https://cea.hal.science/cea-01857264$$DView record in HAL
BookMark eNqFkU1P3DAQhq2Kiq9y7bGK1As97HbGjuPkiBABpFAOtGfL60yoUeJs7WQR_x6jha2EVPXkkfU8Mx6_R2zPj54Y-4ywRAD-PQ59v-SAJWAF8IEdYoFiUZS82tvVCAfsKMYHAIE8V_vsQABUKHl-yOrLYLqpNnHK7ubQGUvZhb93nig4f59NY3Y9rMO4oezmts5-GD-uTZic7Slm9ZyqDXmK8RP72Jk-0snrecx-1Rc_z68Wze3l9flZs7ASBSykyEnmrZSihartUHaWFEcli5ZUWRQqXa7SMoqwtKZscxS2qlYIpaAOVyCO2bdt39-m1-vgBhOe9GicvjprtCWjkywVL_INJvZ0y6b3_5kpTnpw0VLfG0_jHDWHskikApXQr-_Qh3EOPm2iOWKRxudlmagvr9S8GqjdzX_7zQTkW8CGMcZAnbZuMpMb_RSM6zWCfglNv4Smd6ElbflOe-v8T6HaCo-up6f_0Prupmn-us9NLqbd
CitedBy_id crossref_primary_10_1021_acs_jpcc_0c05244
crossref_primary_10_1039_D4GC05154H
crossref_primary_10_1039_D1QM00784J
crossref_primary_10_1142_S0217979222501983
crossref_primary_10_1002_adhm_202402630
crossref_primary_10_1002_adhm_202404334
crossref_primary_10_1021_acsami_3c03230
crossref_primary_10_3389_fbioe_2020_01027
crossref_primary_10_1021_jacs_1c08265
crossref_primary_10_1016_j_mtbio_2021_100180
crossref_primary_10_3390_nano9081103
crossref_primary_10_1002_anie_202301833
crossref_primary_10_3390_nano11030722
crossref_primary_10_1002_cmdc_201900596
crossref_primary_10_1021_acsinfecdis_3c00131
crossref_primary_10_1039_D3NR05776C
crossref_primary_10_1002_adfm_202307947
crossref_primary_10_1002_viw2_20
crossref_primary_10_1021_acsomega_3c02418
crossref_primary_10_1038_s43586_024_00320_8
crossref_primary_10_1016_j_jddst_2020_102217
crossref_primary_10_1002_cssc_202400946
crossref_primary_10_1038_s41467_024_54936_1
crossref_primary_10_1039_D2CC06088D
crossref_primary_10_1002_smll_202310250
crossref_primary_10_1021_acsmaterialsau_4c00109
crossref_primary_10_1016_j_colcom_2021_100409
crossref_primary_10_1016_j_ijpharm_2022_121647
crossref_primary_10_1039_D4EY00250D
crossref_primary_10_1142_S0217984923501592
crossref_primary_10_3390_nano12162820
crossref_primary_10_1002_ange_202301833
crossref_primary_10_1002_smll_201906846
crossref_primary_10_1016_j_addr_2022_114496
crossref_primary_10_1021_acsnano_2c09571
crossref_primary_10_1039_D1BM00669J
crossref_primary_10_1002_admi_202300955
crossref_primary_10_1021_acs_analchem_1c04374
crossref_primary_10_1021_acs_chemmater_2c01190
crossref_primary_10_1016_j_matt_2021_09_006
crossref_primary_10_1016_j_ccr_2021_214393
crossref_primary_10_1002_smll_202310163
crossref_primary_10_1007_s44169_024_00064_2
crossref_primary_10_1002_adfm_201909062
crossref_primary_10_1002_adma_202300700
crossref_primary_10_1002_advs_202301869
crossref_primary_10_1016_j_poly_2021_115509
crossref_primary_10_1021_acs_biomac_9b00870
crossref_primary_10_1039_D3SC03659F
crossref_primary_10_3390_pharmaceutics15051521
crossref_primary_10_1002_smll_201905889
crossref_primary_10_1021_acssuschemeng_8b05587
crossref_primary_10_1039_D1CS00918D
crossref_primary_10_1016_j_jconrel_2023_07_056
crossref_primary_10_1002_chem_201902599
crossref_primary_10_1021_acsami_3c00872
crossref_primary_10_3390_molecules25071598
crossref_primary_10_3390_pharmaceutics11070327
crossref_primary_10_3390_molecules25010185
crossref_primary_10_1002_adfm_202301013
crossref_primary_10_1021_acsnano_1c10942
crossref_primary_10_1021_jacs_1c03943
crossref_primary_10_3390_nano13050953
crossref_primary_10_1038_s41598_023_39697_z
crossref_primary_10_1016_j_ccr_2020_213525
crossref_primary_10_1016_j_mtcomm_2023_106244
crossref_primary_10_1016_j_addr_2023_114730
crossref_primary_10_1016_j_inoche_2024_113334
crossref_primary_10_61186_mci_7_4_25
crossref_primary_10_1021_acsami_1c08294
crossref_primary_10_1002_eem2_12668
crossref_primary_10_1002_aenm_202100219
Cites_doi 10.1021/la5012555
10.1016/S0927-7765(99)00156-3
10.1038/nmat2608
10.1039/C5TB01949D
10.1021/cm071371i
10.1039/C5CC10171A
10.1002/smll.200800199
10.1016/0022-1759(83)90303-4
10.1039/C0CS00031K
10.1021/acsami.7b05142
10.1039/c3sc22116d
10.1039/b805101a
10.1016/j.chempr.2017.06.007
10.1021/acs.accounts.7b00090
10.3109/1061186X.2015.1073294
10.1039/C4CS00067F
10.1039/c2jm32299d
10.1002/wnan.1157
10.1021/cr200179u
10.1038/srep43099
10.1021/nn204543c
10.1021/acs.chemmater.6b00180
10.1126/science.8128245
10.1158/1535-7163.MCT-08-0137
10.1002/ejic.201200710
10.1039/C5BM00186B
10.1039/C4CS90059F
10.1002/adhm.201400755
10.2165/00063030-200822050-00004
10.1039/c0jm03679j
10.5194/acp-11-11777-2011
10.1016/j.colsurfb.2013.08.047
10.1038/ncomms15322
10.1016/j.cbpa.2009.12.012
10.1021/acs.chemmater.7b01329
10.1039/C7CS90049J
10.1021/acsami.7b06105
10.1002/adma.201707365
10.1038/srep07925
10.2138/gsrmg.49.1.485
10.1002/anie.201001230
10.1002/anie.201707346
10.1021/acsnano.6b00053
10.1039/C4CC04458D
10.1039/C7BM00028F
10.1021/nl051472k
10.1039/C5CC02339D
10.1021/jp0457592
10.1038/nnano.2012.207
10.1039/C3TB20832J
10.1016/j.chempr.2017.02.005
10.1039/C5CC06767G
10.1038/nbt.3330
10.1007/s10853-011-5709-z
10.1002/adfm.201606314
10.1021/cr200256v
10.1039/c2tb00366j
10.1039/C5NR06192J
10.1016/j.ccr.2015.08.008
10.1021/acs.chemmater.7b02358
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
1XC
DOI 10.1002/smll.201801900
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID oai_HAL_cea_01857264v1
30091524
10_1002_smll_201801900
SMLL201801900
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MINECO‐AEI/FEDER
  funderid: ENE2016‐79608‐C2‐1‐R
– fundername: Spanish Ramón y Cajal Programme
  funderid: 2014‐16823
– fundername: French National Research Agency
  funderid: ANR‐10‐LABX‐0035
– fundername: European Commission for a Marie Sklodowska‐Curie postdoctoral fellowship
  funderid: H2020‐MSCA‐IF‐658224
– fundername: European Union's Seventh Framework Programme
  funderid: FP7/2007‐2013; 291803
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
LH4
1XC
ID FETCH-LOGICAL-c5130-534e54d553d09df15fce721756de786679dfb0187e18ca8d413c99b1083ef1b03
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 12 12:49:26 EDT 2025
Fri Sep 05 03:16:46 EDT 2025
Fri Jul 25 12:01:04 EDT 2025
Mon Jul 21 06:00:04 EDT 2025
Tue Jul 01 02:10:37 EDT 2025
Thu Apr 24 23:05:50 EDT 2025
Wed Jan 22 16:24:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords furtiveness
biomedical applications of MOFs
PEGylated nanoparticles
MOF
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5130-534e54d553d09df15fce721756de786679dfb0187e18ca8d413c99b1083ef1b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6544-5911
0000-0002-4931-5711
0000-0001-7961-5443
0000-0003-3040-2564
0000-0002-7869-0908
0000-0001-9724-9715
0000-0001-8252-7655
0000-0002-2678-0776
OpenAccessLink http://hdl.handle.net/11093/6344
PMID 30091524
PQID 2116083488
PQPubID 1046358
PageCount 11
ParticipantIDs hal_primary_oai_HAL_cea_01857264v1
proquest_miscellaneous_2086264707
proquest_journals_2116083488
pubmed_primary_30091524
crossref_citationtrail_10_1002_smll_201801900
crossref_primary_10_1002_smll_201801900
wiley_primary_10_1002_smll_201801900_SMLL201801900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2017 2017 2017; 9 9 5
2017; 7
2017; 8
2017; 2
2013; 4
2012; 2012
2017; 3
2010; 14
2013; 1
2016; 307
2015; 33
2011; 11
2008; 7
2008; 4
2002; 49
2000; 18
2014; 2
1994; 263
2014 2017 2017; 43 46 46
1983; 65
2005; 109
2011; 21
2008; 22
2012; 22
2010; 9
2007; 19
2015; 5
2012 2011; 112 40
2015; 4
2015; 3
2015; 51
2017; 27
2008
2016; 52
2017; 29
2015; 7
2014; 43
2012 2016; 7 10
2014; 113
2016; 4
2017; 50
2015; 23
2010; 49
2012; 112
2004; 15
2017; 56
2005; 5
2018
2017
2011; 46
2012; 6
2014; 30
2016; 28
2012; 4
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_47_2
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_23_3
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Lucarelli M. (e_1_2_7_59_1) 2004; 15
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 43
  start-page: 5896
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 307
  start-page: 342
  year: 2016
  publication-title: Coord. Chem. Rev.
– volume: 18
  start-page: 301
  year: 2000
  publication-title: Colloids Surf., B
– volume: 7
  start-page: 43099
  year: 2017
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2025
  year: 2008
  publication-title: Small
– volume: 29
  start-page: 4580
  year: 2017
  publication-title: Chem. Mater.
– volume: 263
  start-page: 1600
  year: 1994
  publication-title: Science
– year: 2018
– volume: 51
  start-page: 5199
  year: 2015
  publication-title: Chem. Commun.
– volume: 4
  start-page: 1108
  year: 2016
  publication-title: J. Mater. Chem. B
– volume: 4
  start-page: 1246
  year: 2015
  publication-title: Adv. Healthcare Mater.
– volume: 51
  start-page: 15752
  year: 2015
  publication-title: Chem. Commun.
– volume: 7 10
  start-page: 779 4421
  year: 2012 2016
  publication-title: Nat. Nanotechnol. ACS Nano
– volume: 1
  start-page: 1101
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 9
  start-page: 172
  year: 2010
  publication-title: Nat. Mater.
– volume: 4
  start-page: 219
  year: 2012
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 30
  start-page: 5911
  year: 2014
  publication-title: Langmuir
– volume: 2
  start-page: 262
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 4
  start-page: 1597
  year: 2013
  publication-title: Chem. Sci.
– volume: 2012
  start-page: 5165
  year: 2012
  publication-title: Eur. J. Inorg. Chem.
– volume: 49
  start-page: 485
  year: 2002
  publication-title: Rev. Mineral. Geochem.
– volume: 65
  start-page: 55
  year: 1983
  publication-title: J. Immunol. Methods
– volume: 15
  start-page: 339
  year: 2004
  publication-title: Eur. Cytokine Network
– start-page: 5493
  year: 2008
  publication-title: Chem. Commun.
– volume: 49
  start-page: 5949
  year: 2010
  publication-title: ngew. Chem., Int. Ed.
– volume: 109
  start-page: 5375
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 23
  start-page: 759
  year: 2015
  publication-title: J. Drug Targeting
– volume: 50
  start-page: 1423
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 33
  start-page: 941
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 28
  start-page: 3318
  year: 2016
  publication-title: Chem. Mater.
– volume: 3
  start-page: 303
  year: 2017
  publication-title: Chem
– volume: 9 9 5
  start-page: 19687 22278 1032
  year: 2017 2017 2017
  publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces Biomater. Sci.
– volume: 19
  start-page: 6323
  year: 2007
  publication-title: Chem. Mater.
– volume: 21
  start-page: 4615
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 27
  start-page: 1606314
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 6332
  year: 2011
  publication-title: J. Mater. Sci.
– volume: 14
  start-page: 262
  year: 2010
  publication-title: Curr. Opin. Chem. Biol.
– volume: 3
  start-page: 1270
  year: 2015
  publication-title: Biomater. Sci.
– volume: 29
  start-page: 8042
  year: 2017
  publication-title: Chem. Mater.
– volume: 22
  start-page: 315
  year: 2008
  publication-title: BioDrugs
– volume: 51
  start-page: 8614
  year: 2015
  publication-title: Chem. Commun.
– volume: 5
  start-page: 7925
  year: 2015
  publication-title: Sci. Rep.
– volume: 56
  start-page: 15565
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 112
  start-page: 1232
  year: 2012
  publication-title: Chem. Rev.
– volume: 43 46 46
  start-page: 5415 3104 3104
  year: 2014 2017 2017
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 113
  start-page: 198
  year: 2014
  publication-title: Colloids Surf., B
– volume: 7
  start-page: 2415
  year: 2008
  publication-title: Mol. Cancer Ther.
– volume: 6
  start-page: 1565
  year: 2012
  publication-title: ACS Nano
– start-page: 1707365
  year: 2018
  publication-title: Adv. Mater.
– volume: 2
  start-page: 561
  year: 2017
  publication-title: Chem
– volume: 22
  start-page: 18139
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 52
  start-page: 3400
  year: 2016
  publication-title: Chem. Commun.
– volume: 7
  start-page: 19568
  year: 2015
  publication-title: Nanoscale
– volume: 8
  start-page: 15322
  year: 2017
  publication-title: Nat. Commun.
– year: 2017
– volume: 112 40
  start-page: 970 498
  year: 2012 2011
  publication-title: Chem. Rev. Chem. Soc. Rev.
– volume: 5
  start-page: 2394
  year: 2005
  publication-title: Nano Lett.
– volume: 11
  start-page: 11777
  year: 2011
  publication-title: Atmos. Chem. Phys.
– ident: e_1_2_7_57_1
  doi: 10.1021/la5012555
– ident: e_1_2_7_54_1
  doi: 10.1016/S0927-7765(99)00156-3
– ident: e_1_2_7_20_1
  doi: 10.1038/nmat2608
– ident: e_1_2_7_46_1
  doi: 10.1039/C5TB01949D
– ident: e_1_2_7_2_1
  doi: 10.1021/cm071371i
– ident: e_1_2_7_14_1
  doi: 10.1039/C5CC10171A
– ident: e_1_2_7_39_1
  doi: 10.1002/smll.200800199
– ident: e_1_2_7_58_1
  doi: 10.1016/0022-1759(83)90303-4
– ident: e_1_2_7_11_2
  doi: 10.1039/C0CS00031K
– ident: e_1_2_7_23_1
  doi: 10.1021/acsami.7b05142
– ident: e_1_2_7_49_1
  doi: 10.1039/c3sc22116d
– ident: e_1_2_7_30_1
  doi: 10.1039/b805101a
– ident: e_1_2_7_8_1
  doi: 10.1016/j.chempr.2017.06.007
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.accounts.7b00090
– ident: e_1_2_7_53_1
  doi: 10.3109/1061186X.2015.1073294
– ident: e_1_2_7_12_1
  doi: 10.1039/C4CS00067F
– ident: e_1_2_7_40_1
  doi: 10.1039/c2jm32299d
– ident: e_1_2_7_37_1
  doi: 10.1002/wnan.1157
– ident: e_1_2_7_11_1
  doi: 10.1021/cr200179u
– ident: e_1_2_7_29_1
  doi: 10.1038/srep43099
– ident: e_1_2_7_36_1
  doi: 10.1021/nn204543c
– ident: e_1_2_7_41_1
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.chemmater.6b00180
– ident: e_1_2_7_35_1
  doi: 10.1126/science.8128245
– ident: e_1_2_7_52_1
  doi: 10.1158/1535-7163.MCT-08-0137
– ident: e_1_2_7_56_1
  doi: 10.1002/ejic.201200710
– ident: e_1_2_7_10_1
  doi: 10.1039/C5BM00186B
– ident: e_1_2_7_7_1
  doi: 10.1039/C4CS90059F
– ident: e_1_2_7_28_1
  doi: 10.1002/adhm.201400755
– ident: e_1_2_7_38_1
  doi: 10.2165/00063030-200822050-00004
– ident: e_1_2_7_4_1
  doi: 10.1039/c0jm03679j
– ident: e_1_2_7_45_1
  doi: 10.5194/acp-11-11777-2011
– ident: e_1_2_7_50_1
  doi: 10.1016/j.colsurfb.2013.08.047
– ident: e_1_2_7_21_1
  doi: 10.1038/ncomms15322
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cbpa.2009.12.012
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.chemmater.7b01329
– ident: e_1_2_7_7_3
  doi: 10.1039/C7CS90049J
– ident: e_1_2_7_23_2
  doi: 10.1021/acsami.7b06105
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201707365
– volume: 15
  start-page: 339
  year: 2004
  ident: e_1_2_7_59_1
  publication-title: Eur. Cytokine Network
– ident: e_1_2_7_27_1
  doi: 10.1038/srep07925
– ident: e_1_2_7_44_1
  doi: 10.2138/gsrmg.49.1.485
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201001230
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201707346
– ident: e_1_2_7_47_2
  doi: 10.1021/acsnano.6b00053
– ident: e_1_2_7_1_1
– ident: e_1_2_7_13_1
  doi: 10.1039/C4CC04458D
– ident: e_1_2_7_23_3
  doi: 10.1039/C7BM00028F
– ident: e_1_2_7_3_1
  doi: 10.1021/nl051472k
– ident: e_1_2_7_32_1
  doi: 10.1039/C5CC02339D
– ident: e_1_2_7_43_1
  doi: 10.1021/jp0457592
– ident: e_1_2_7_47_1
  doi: 10.1038/nnano.2012.207
– ident: e_1_2_7_48_1
  doi: 10.1039/C3TB20832J
– ident: e_1_2_7_31_1
  doi: 10.1016/j.chempr.2017.02.005
– ident: e_1_2_7_25_1
  doi: 10.1039/C5CC06767G
– ident: e_1_2_7_55_1
  doi: 10.1038/nbt.3330
– ident: e_1_2_7_5_1
  doi: 10.1007/s10853-011-5709-z
– ident: e_1_2_7_6_1
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.201606314
– ident: e_1_2_7_16_1
  doi: 10.1021/cr200256v
– ident: e_1_2_7_51_1
  doi: 10.1039/c2tb00366j
– ident: e_1_2_7_7_2
  doi: 10.1039/C7CS90049J
– ident: e_1_2_7_9_1
  doi: 10.1039/C5NR06192J
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ccr.2015.08.008
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.chemmater.7b02358
SSID ssj0031247
Score 2.5729756
Snippet Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial...
Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1801900
SubjectTerms Anticancer properties
Biocompatibility
biomedical applications of MOFs
Biomedical materials
Biopolymers
Chemical Sciences
Coating effects
Colloid chemistry
furtiveness
Grafting
Hyaluronic acid
Iron
Material chemistry
Medicinal Chemistry
Metal-organic frameworks
MOF
Nanoparticles
Nanotechnology
Organic chemistry
PEGylated nanoparticles
Phagocytosis
Polyethylene glycol
Porosity
Stability
Toxicity
Title GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201801900
https://www.ncbi.nlm.nih.gov/pubmed/30091524
https://www.proquest.com/docview/2116083488
https://www.proquest.com/docview/2086264707
https://cea.hal.science/cea-01857264
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qnNoDhS40ZZGpKvVkiJM4yxEB6aiaoVIBiZvl2C9CKp2pZhIO_Hqes3WGClWityR2Ettvt58_A3wOfDQSU8OJgUseCVHwzGjLLfGLjVAHQeZ2I0_O49FV9O1aXi_t4m_xIYYJNycZjb52Aq6LxdEf0NDFr1u3dCBStxvaBe0ijB14_umPAT8qJOPVnK5CNos74K0etdEPjlZfX7FKazcuJ_Jvh3PVf20MUP4adN_0Nu_k52FdFYfm_hGq4__0bRM2Ou-UHbfstAUvcPoGXi1hFr6F_Otcl1WuFxW7qOelNsiWylk1Y-08BbLJ95yR8qaovEu-Y3k977XrO7jKzy5PRrw7jIEbSXaOyzBCGVkpQ-tnthSyNEjRYyJji0kaxwk9LNwJfyhSo1NLxtFkWSHIxcNSFH74Htansyl-AEbBvEyFCcMAdWTRpvTRQhgb6EyTbvY94D0xlOmQyt2BGbeqxVgOlBsfNYyPB1-G-r9bjI4na34i2g6VHLT26HisDGrlO1As8g7vhAe7PelVJ9ALRXFyTF0hdefBwVBMoujWV_QUZzXVacLDKPETD7Zblhl-FZIvS65S5EHQEP4fDVUXk_F4uPv4nJd24KW7bhMPd2G9mte4Rw5UVew3QvIAiLoPmg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcoAeCuVRAi11ERInt3ES53GsEOlCs0WircTNcmxHSG130W7SA7-embzogiokOMaxE79m5ht7_BngbeA7I11qOE7gikdClDwz2nKL88VGTgdBRqeRp6fx5CL69FUO0YR0FqbjhxgX3EgyWn1NAk4L0oe_WEOX11e0dyBSOg6NXvv9dpOOcNGXkUEqRPPV3q-CVosT9dbA2-gHh6vlV-zSvW8UFfkn5FxFsK0Jyh9BOVS-izy5PGjq8sD8-I3X8b9a9xg2e4DKjroZtQVrbvYENm7RFj6F_HihqzrXy5qdNYtKG8duvWf1nHVLFY5NP-cM9Tc65n38HcubxaBgn8FF_uH8_YT39zFwI9HUcRlGTkZWytD6ma2ErIxDBzKRsXVJGscJJpZ0yZ8TqdGpRftosqwUiPJcJUo_fA7rs_nMvQCG_rxMhQnDwOnIOpviR0thbKAzjerZ94APo6FMT1ZOd2ZcqY5mOVDUP2rsHw_ejfm_dzQdd-Z8g4M7ZiJ27clRoYzTyideLASIN8KDnWHsVS_TS4WucoxNQY3nwf74GqWRtlj0zM0bzNN6iFHiJx5sd3Nm_FWIcBbRUuRB0I78XyqqzqZFMT69_JdCe_Bgcj4tVPHx9OQVPKT0Lg5xB9brReN2EU_V5etWYn4Cj_kTuA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAcKK9CoIBBSJzcxomdx7FqGxbYLYhSqTfLsSdCouxWuwkHfj3jvNgFISQ4xrETv2bmG3v8GeBlFKJVmFlOE7jiUoiS59Y47mi-OIkminJ_Gnl2kkzO5Ntzdb52ir_jhxgX3LxktPraC_ilq_Z_koauvl74rQOR-dPQ5LRfkwnZSg-LPo4EUjFZr_Z6FTJa3DNvDbSNYbS_WX7DLF397IMif0ecmwC2tUDFNpih7l3gyZe9pi737PdfaB3_p3G34VYPT9lBN5_uwBWc34Wba6SF96B4vTRVXZhVzU6bZWUssrX3rF6wbqEC2ex9wUh7k1veR9-xolkO6vU-nBXHnw4nvL-NgVtFho6rWKKSTqnYhbmrhKoskvuYqsRhmiVJSomlv-IPRWZN5sg62jwvBWE8rEQZxjuwNV_M8SEw8uZVJmwcR2ikQ5fRR0thXWRyQ8o5DIAPg6FtT1Xub8y40B3JcqR9_-ixfwJ4Nea_7Eg6_pjzBY3tmMlza08Optqi0aFnxSJ4-E0EsDsMve4leqXJUU6oKaTvAng-viZZ9BssZo6LhvK0_qFMwzSAB92UGX8VE5glrCQDiNqB_0tF9elsOh2fHv1LoWdw_cNRoadvTt49hhs-uQtC3IWtetngEwJTdfm0lZcfONISZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraftFast+Surface+Engineering+to+Improve+MOF+Nanoparticles+Furtiveness&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gim%C3%A9nez-Marqu%C3%A9s%2C+M%C3%B3nica&rft.au=Bellido%2C+Elena&rft.au=Berthelot%2C+Thomas&rft.au=Sim%C3%B3n-Yarza%2C+Teresa&rft.date=2018-10-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=14&rft.issue=40&rft.spage=e1801900&rft_id=info:doi/10.1002%2Fsmll.201801900&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon