GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness
Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with sig...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 40; pp. e1801900 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2018
Wiley-VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.201801900 |
Cover
Abstract | Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL‐100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high‐resolution soft X‐ray spectroscopy. Finally, a cell penetration study using the radio‐labeled antitumor agent gemcitabine monophosphate (3H‐GMP)‐loaded MIL‐100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.
A green and highly selective general GraftFast method is reported for the successful attachment of biopolymers on the external surface of nanometric metal–organic frameworks. PEGylated MIL‐100(Fe) nanoparticles exhibit superior chemical and colloidal stability, allowing the adsorption of bioactive molecules. A cell penetration study using the antitumor agent gemcitabine monophosphate‐loaded MIL‐100(Fe)@polyethylene glycol (PEG) confirms a significant in vitro PEG furtiveness. |
---|---|
AbstractList | Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF-PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (
H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness. Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (3H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness. Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL‐100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high‐resolution soft X‐ray spectroscopy. Finally, a cell penetration study using the radio‐labeled antitumor agent gemcitabine monophosphate ( 3 H‐GMP)‐loaded MIL‐100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness. Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF-PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (3 H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF-PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (3 H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness. Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL‐100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high‐resolution soft X‐ray spectroscopy. Finally, a cell penetration study using the radio‐labeled antitumor agent gemcitabine monophosphate (3H‐GMP)‐loaded MIL‐100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness. A green and highly selective general GraftFast method is reported for the successful attachment of biopolymers on the external surface of nanometric metal–organic frameworks. PEGylated MIL‐100(Fe) nanoparticles exhibit superior chemical and colloidal stability, allowing the adsorption of bioactive molecules. A cell penetration study using the antitumor agent gemcitabine monophosphate‐loaded MIL‐100(Fe)@polyethylene glycol (PEG) confirms a significant in vitro PEG furtiveness. |
Author | Giménez‐Marqués, Mónica Hidalgo, Tania Horcajada, Patricia Couvreur, Patrick Avila, José Asensio, Maria Carmen Berthelot, Thomas Simón‐Vázquez, Rosana González‐Fernández, África Simón‐Yarza, Teresa Gref, Ruxandra Bellido, Elena Serre, Christian |
Author_xml | – sequence: 1 givenname: Mónica orcidid: 0000-0002-4931-5711 surname: Giménez‐Marqués fullname: Giménez‐Marqués, Mónica email: monica.gimenez-marques@uv.es organization: PSL Research University – sequence: 2 givenname: Elena surname: Bellido fullname: Bellido, Elena organization: Université Paris‐Saclay – sequence: 3 givenname: Thomas surname: Berthelot fullname: Berthelot, Thomas organization: CEA Saclay – sequence: 4 givenname: Teresa surname: Simón‐Yarza fullname: Simón‐Yarza, Teresa organization: Université Paris‐Saclay – sequence: 5 givenname: Tania surname: Hidalgo fullname: Hidalgo, Tania organization: Université Paris‐Saclay – sequence: 6 givenname: Rosana surname: Simón‐Vázquez fullname: Simón‐Vázquez, Rosana organization: Campus Lagoas Marcosende – sequence: 7 givenname: África surname: González‐Fernández fullname: González‐Fernández, África organization: Campus Lagoas Marcosende – sequence: 8 givenname: José surname: Avila fullname: Avila, José organization: L'Orme des Merisiers – sequence: 9 givenname: Maria Carmen surname: Asensio fullname: Asensio, Maria Carmen organization: L'Orme des Merisiers – sequence: 10 givenname: Ruxandra surname: Gref fullname: Gref, Ruxandra organization: UMR CNRS 8214 – sequence: 11 givenname: Patrick surname: Couvreur fullname: Couvreur, Patrick organization: Université Paris Saclay – sequence: 12 givenname: Christian surname: Serre fullname: Serre, Christian organization: PSL Research University – sequence: 13 givenname: Patricia orcidid: 0000-0002-6544-5911 surname: Horcajada fullname: Horcajada, Patricia email: patricia.horcajada@imdea.org organization: Advanced Porous Materials Unit, IMDEA Energy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30091524$$D View this record in MEDLINE/PubMed https://cea.hal.science/cea-01857264$$DView record in HAL |
BookMark | eNqFkU1P3DAQhq2Kiq9y7bGK1As97HbGjuPkiBABpFAOtGfL60yoUeJs7WQR_x6jha2EVPXkkfU8Mx6_R2zPj54Y-4ywRAD-PQ59v-SAJWAF8IEdYoFiUZS82tvVCAfsKMYHAIE8V_vsQABUKHl-yOrLYLqpNnHK7ubQGUvZhb93nig4f59NY3Y9rMO4oezmts5-GD-uTZic7Slm9ZyqDXmK8RP72Jk-0snrecx-1Rc_z68Wze3l9flZs7ASBSykyEnmrZSihartUHaWFEcli5ZUWRQqXa7SMoqwtKZscxS2qlYIpaAOVyCO2bdt39-m1-vgBhOe9GicvjprtCWjkywVL_INJvZ0y6b3_5kpTnpw0VLfG0_jHDWHskikApXQr-_Qh3EOPm2iOWKRxudlmagvr9S8GqjdzX_7zQTkW8CGMcZAnbZuMpMb_RSM6zWCfglNv4Smd6ElbflOe-v8T6HaCo-up6f_0Prupmn-us9NLqbd |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_0c05244 crossref_primary_10_1039_D4GC05154H crossref_primary_10_1039_D1QM00784J crossref_primary_10_1142_S0217979222501983 crossref_primary_10_1002_adhm_202402630 crossref_primary_10_1002_adhm_202404334 crossref_primary_10_1021_acsami_3c03230 crossref_primary_10_3389_fbioe_2020_01027 crossref_primary_10_1021_jacs_1c08265 crossref_primary_10_1016_j_mtbio_2021_100180 crossref_primary_10_3390_nano9081103 crossref_primary_10_1002_anie_202301833 crossref_primary_10_3390_nano11030722 crossref_primary_10_1002_cmdc_201900596 crossref_primary_10_1021_acsinfecdis_3c00131 crossref_primary_10_1039_D3NR05776C crossref_primary_10_1002_adfm_202307947 crossref_primary_10_1002_viw2_20 crossref_primary_10_1021_acsomega_3c02418 crossref_primary_10_1038_s43586_024_00320_8 crossref_primary_10_1016_j_jddst_2020_102217 crossref_primary_10_1002_cssc_202400946 crossref_primary_10_1038_s41467_024_54936_1 crossref_primary_10_1039_D2CC06088D crossref_primary_10_1002_smll_202310250 crossref_primary_10_1021_acsmaterialsau_4c00109 crossref_primary_10_1016_j_colcom_2021_100409 crossref_primary_10_1016_j_ijpharm_2022_121647 crossref_primary_10_1039_D4EY00250D crossref_primary_10_1142_S0217984923501592 crossref_primary_10_3390_nano12162820 crossref_primary_10_1002_ange_202301833 crossref_primary_10_1002_smll_201906846 crossref_primary_10_1016_j_addr_2022_114496 crossref_primary_10_1021_acsnano_2c09571 crossref_primary_10_1039_D1BM00669J crossref_primary_10_1002_admi_202300955 crossref_primary_10_1021_acs_analchem_1c04374 crossref_primary_10_1021_acs_chemmater_2c01190 crossref_primary_10_1016_j_matt_2021_09_006 crossref_primary_10_1016_j_ccr_2021_214393 crossref_primary_10_1002_smll_202310163 crossref_primary_10_1007_s44169_024_00064_2 crossref_primary_10_1002_adfm_201909062 crossref_primary_10_1002_adma_202300700 crossref_primary_10_1002_advs_202301869 crossref_primary_10_1016_j_poly_2021_115509 crossref_primary_10_1021_acs_biomac_9b00870 crossref_primary_10_1039_D3SC03659F crossref_primary_10_3390_pharmaceutics15051521 crossref_primary_10_1002_smll_201905889 crossref_primary_10_1021_acssuschemeng_8b05587 crossref_primary_10_1039_D1CS00918D crossref_primary_10_1016_j_jconrel_2023_07_056 crossref_primary_10_1002_chem_201902599 crossref_primary_10_1021_acsami_3c00872 crossref_primary_10_3390_molecules25071598 crossref_primary_10_3390_pharmaceutics11070327 crossref_primary_10_3390_molecules25010185 crossref_primary_10_1002_adfm_202301013 crossref_primary_10_1021_acsnano_1c10942 crossref_primary_10_1021_jacs_1c03943 crossref_primary_10_3390_nano13050953 crossref_primary_10_1038_s41598_023_39697_z crossref_primary_10_1016_j_ccr_2020_213525 crossref_primary_10_1016_j_mtcomm_2023_106244 crossref_primary_10_1016_j_addr_2023_114730 crossref_primary_10_1016_j_inoche_2024_113334 crossref_primary_10_61186_mci_7_4_25 crossref_primary_10_1021_acsami_1c08294 crossref_primary_10_1002_eem2_12668 crossref_primary_10_1002_aenm_202100219 |
Cites_doi | 10.1021/la5012555 10.1016/S0927-7765(99)00156-3 10.1038/nmat2608 10.1039/C5TB01949D 10.1021/cm071371i 10.1039/C5CC10171A 10.1002/smll.200800199 10.1016/0022-1759(83)90303-4 10.1039/C0CS00031K 10.1021/acsami.7b05142 10.1039/c3sc22116d 10.1039/b805101a 10.1016/j.chempr.2017.06.007 10.1021/acs.accounts.7b00090 10.3109/1061186X.2015.1073294 10.1039/C4CS00067F 10.1039/c2jm32299d 10.1002/wnan.1157 10.1021/cr200179u 10.1038/srep43099 10.1021/nn204543c 10.1021/acs.chemmater.6b00180 10.1126/science.8128245 10.1158/1535-7163.MCT-08-0137 10.1002/ejic.201200710 10.1039/C5BM00186B 10.1039/C4CS90059F 10.1002/adhm.201400755 10.2165/00063030-200822050-00004 10.1039/c0jm03679j 10.5194/acp-11-11777-2011 10.1016/j.colsurfb.2013.08.047 10.1038/ncomms15322 10.1016/j.cbpa.2009.12.012 10.1021/acs.chemmater.7b01329 10.1039/C7CS90049J 10.1021/acsami.7b06105 10.1002/adma.201707365 10.1038/srep07925 10.2138/gsrmg.49.1.485 10.1002/anie.201001230 10.1002/anie.201707346 10.1021/acsnano.6b00053 10.1039/C4CC04458D 10.1039/C7BM00028F 10.1021/nl051472k 10.1039/C5CC02339D 10.1021/jp0457592 10.1038/nnano.2012.207 10.1039/C3TB20832J 10.1016/j.chempr.2017.02.005 10.1039/C5CC06767G 10.1038/nbt.3330 10.1007/s10853-011-5709-z 10.1002/adfm.201606314 10.1021/cr200256v 10.1039/c2tb00366j 10.1039/C5NR06192J 10.1016/j.ccr.2015.08.008 10.1021/acs.chemmater.7b02358 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 1XC |
DOI | 10.1002/smll.201801900 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_cea_01857264v1 30091524 10_1002_smll_201801900 SMLL201801900 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MINECO‐AEI/FEDER funderid: ENE2016‐79608‐C2‐1‐R – fundername: Spanish Ramón y Cajal Programme funderid: 2014‐16823 – fundername: French National Research Agency funderid: ANR‐10‐LABX‐0035 – fundername: European Commission for a Marie Sklodowska‐Curie postdoctoral fellowship funderid: H2020‐MSCA‐IF‐658224 – fundername: European Union's Seventh Framework Programme funderid: FP7/2007‐2013; 291803 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 LH4 1XC |
ID | FETCH-LOGICAL-c5130-534e54d553d09df15fce721756de786679dfb0187e18ca8d413c99b1083ef1b03 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 12 12:49:26 EDT 2025 Fri Sep 05 03:16:46 EDT 2025 Fri Jul 25 12:01:04 EDT 2025 Mon Jul 21 06:00:04 EDT 2025 Tue Jul 01 02:10:37 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Wed Jan 22 16:24:48 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | furtiveness biomedical applications of MOFs PEGylated nanoparticles MOF |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5130-534e54d553d09df15fce721756de786679dfb0187e18ca8d413c99b1083ef1b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6544-5911 0000-0002-4931-5711 0000-0001-7961-5443 0000-0003-3040-2564 0000-0002-7869-0908 0000-0001-9724-9715 0000-0001-8252-7655 0000-0002-2678-0776 |
OpenAccessLink | http://hdl.handle.net/11093/6344 |
PMID | 30091524 |
PQID | 2116083488 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_cea_01857264v1 proquest_miscellaneous_2086264707 proquest_journals_2116083488 pubmed_primary_30091524 crossref_citationtrail_10_1002_smll_201801900 crossref_primary_10_1002_smll_201801900 wiley_primary_10_1002_smll_201801900_SMLL201801900 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-00 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-00 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | 2017 2017 2017; 9 9 5 2017; 7 2017; 8 2017; 2 2013; 4 2012; 2012 2017; 3 2010; 14 2013; 1 2016; 307 2015; 33 2011; 11 2008; 7 2008; 4 2002; 49 2000; 18 2014; 2 1994; 263 2014 2017 2017; 43 46 46 1983; 65 2005; 109 2011; 21 2008; 22 2012; 22 2010; 9 2007; 19 2015; 5 2012 2011; 112 40 2015; 4 2015; 3 2015; 51 2017; 27 2008 2016; 52 2017; 29 2015; 7 2014; 43 2012 2016; 7 10 2014; 113 2016; 4 2017; 50 2015; 23 2010; 49 2012; 112 2004; 15 2017; 56 2005; 5 2018 2017 2011; 46 2012; 6 2014; 30 2016; 28 2012; 4 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_23_3 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Lucarelli M. (e_1_2_7_59_1) 2004; 15 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 43 start-page: 5896 year: 2014 publication-title: Chem. Soc. Rev. – volume: 307 start-page: 342 year: 2016 publication-title: Coord. Chem. Rev. – volume: 18 start-page: 301 year: 2000 publication-title: Colloids Surf., B – volume: 7 start-page: 43099 year: 2017 publication-title: Sci. Rep. – volume: 4 start-page: 2025 year: 2008 publication-title: Small – volume: 29 start-page: 4580 year: 2017 publication-title: Chem. Mater. – volume: 263 start-page: 1600 year: 1994 publication-title: Science – year: 2018 – volume: 51 start-page: 5199 year: 2015 publication-title: Chem. Commun. – volume: 4 start-page: 1108 year: 2016 publication-title: J. Mater. Chem. B – volume: 4 start-page: 1246 year: 2015 publication-title: Adv. Healthcare Mater. – volume: 51 start-page: 15752 year: 2015 publication-title: Chem. Commun. – volume: 7 10 start-page: 779 4421 year: 2012 2016 publication-title: Nat. Nanotechnol. ACS Nano – volume: 1 start-page: 1101 year: 2013 publication-title: J. Mater. Chem. B – volume: 9 start-page: 172 year: 2010 publication-title: Nat. Mater. – volume: 4 start-page: 219 year: 2012 publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 30 start-page: 5911 year: 2014 publication-title: Langmuir – volume: 2 start-page: 262 year: 2014 publication-title: J. Mater. Chem. B – volume: 4 start-page: 1597 year: 2013 publication-title: Chem. Sci. – volume: 2012 start-page: 5165 year: 2012 publication-title: Eur. J. Inorg. Chem. – volume: 49 start-page: 485 year: 2002 publication-title: Rev. Mineral. Geochem. – volume: 65 start-page: 55 year: 1983 publication-title: J. Immunol. Methods – volume: 15 start-page: 339 year: 2004 publication-title: Eur. Cytokine Network – start-page: 5493 year: 2008 publication-title: Chem. Commun. – volume: 49 start-page: 5949 year: 2010 publication-title: ngew. Chem., Int. Ed. – volume: 109 start-page: 5375 year: 2005 publication-title: J. Phys. Chem. B – volume: 23 start-page: 759 year: 2015 publication-title: J. Drug Targeting – volume: 50 start-page: 1423 year: 2017 publication-title: Acc. Chem. Res. – volume: 33 start-page: 941 year: 2015 publication-title: Nat. Biotechnol. – volume: 28 start-page: 3318 year: 2016 publication-title: Chem. Mater. – volume: 3 start-page: 303 year: 2017 publication-title: Chem – volume: 9 9 5 start-page: 19687 22278 1032 year: 2017 2017 2017 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces Biomater. Sci. – volume: 19 start-page: 6323 year: 2007 publication-title: Chem. Mater. – volume: 21 start-page: 4615 year: 2011 publication-title: J. Mater. Chem. – volume: 27 start-page: 1606314 year: 2017 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 6332 year: 2011 publication-title: J. Mater. Sci. – volume: 14 start-page: 262 year: 2010 publication-title: Curr. Opin. Chem. Biol. – volume: 3 start-page: 1270 year: 2015 publication-title: Biomater. Sci. – volume: 29 start-page: 8042 year: 2017 publication-title: Chem. Mater. – volume: 22 start-page: 315 year: 2008 publication-title: BioDrugs – volume: 51 start-page: 8614 year: 2015 publication-title: Chem. Commun. – volume: 5 start-page: 7925 year: 2015 publication-title: Sci. Rep. – volume: 56 start-page: 15565 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 112 start-page: 1232 year: 2012 publication-title: Chem. Rev. – volume: 43 46 46 start-page: 5415 3104 3104 year: 2014 2017 2017 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Soc. Rev. – volume: 113 start-page: 198 year: 2014 publication-title: Colloids Surf., B – volume: 7 start-page: 2415 year: 2008 publication-title: Mol. Cancer Ther. – volume: 6 start-page: 1565 year: 2012 publication-title: ACS Nano – start-page: 1707365 year: 2018 publication-title: Adv. Mater. – volume: 2 start-page: 561 year: 2017 publication-title: Chem – volume: 22 start-page: 18139 year: 2012 publication-title: J. Mater. Chem. – volume: 52 start-page: 3400 year: 2016 publication-title: Chem. Commun. – volume: 7 start-page: 19568 year: 2015 publication-title: Nanoscale – volume: 8 start-page: 15322 year: 2017 publication-title: Nat. Commun. – year: 2017 – volume: 112 40 start-page: 970 498 year: 2012 2011 publication-title: Chem. Rev. Chem. Soc. Rev. – volume: 5 start-page: 2394 year: 2005 publication-title: Nano Lett. – volume: 11 start-page: 11777 year: 2011 publication-title: Atmos. Chem. Phys. – ident: e_1_2_7_57_1 doi: 10.1021/la5012555 – ident: e_1_2_7_54_1 doi: 10.1016/S0927-7765(99)00156-3 – ident: e_1_2_7_20_1 doi: 10.1038/nmat2608 – ident: e_1_2_7_46_1 doi: 10.1039/C5TB01949D – ident: e_1_2_7_2_1 doi: 10.1021/cm071371i – ident: e_1_2_7_14_1 doi: 10.1039/C5CC10171A – ident: e_1_2_7_39_1 doi: 10.1002/smll.200800199 – ident: e_1_2_7_58_1 doi: 10.1016/0022-1759(83)90303-4 – ident: e_1_2_7_11_2 doi: 10.1039/C0CS00031K – ident: e_1_2_7_23_1 doi: 10.1021/acsami.7b05142 – ident: e_1_2_7_49_1 doi: 10.1039/c3sc22116d – ident: e_1_2_7_30_1 doi: 10.1039/b805101a – ident: e_1_2_7_8_1 doi: 10.1016/j.chempr.2017.06.007 – ident: e_1_2_7_18_1 doi: 10.1021/acs.accounts.7b00090 – ident: e_1_2_7_53_1 doi: 10.3109/1061186X.2015.1073294 – ident: e_1_2_7_12_1 doi: 10.1039/C4CS00067F – ident: e_1_2_7_40_1 doi: 10.1039/c2jm32299d – ident: e_1_2_7_37_1 doi: 10.1002/wnan.1157 – ident: e_1_2_7_11_1 doi: 10.1021/cr200179u – ident: e_1_2_7_29_1 doi: 10.1038/srep43099 – ident: e_1_2_7_36_1 doi: 10.1021/nn204543c – ident: e_1_2_7_41_1 – ident: e_1_2_7_33_1 doi: 10.1021/acs.chemmater.6b00180 – ident: e_1_2_7_35_1 doi: 10.1126/science.8128245 – ident: e_1_2_7_52_1 doi: 10.1158/1535-7163.MCT-08-0137 – ident: e_1_2_7_56_1 doi: 10.1002/ejic.201200710 – ident: e_1_2_7_10_1 doi: 10.1039/C5BM00186B – ident: e_1_2_7_7_1 doi: 10.1039/C4CS90059F – ident: e_1_2_7_28_1 doi: 10.1002/adhm.201400755 – ident: e_1_2_7_38_1 doi: 10.2165/00063030-200822050-00004 – ident: e_1_2_7_4_1 doi: 10.1039/c0jm03679j – ident: e_1_2_7_45_1 doi: 10.5194/acp-11-11777-2011 – ident: e_1_2_7_50_1 doi: 10.1016/j.colsurfb.2013.08.047 – ident: e_1_2_7_21_1 doi: 10.1038/ncomms15322 – ident: e_1_2_7_17_1 doi: 10.1016/j.cbpa.2009.12.012 – ident: e_1_2_7_34_1 doi: 10.1021/acs.chemmater.7b01329 – ident: e_1_2_7_7_3 doi: 10.1039/C7CS90049J – ident: e_1_2_7_23_2 doi: 10.1021/acsami.7b06105 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201707365 – volume: 15 start-page: 339 year: 2004 ident: e_1_2_7_59_1 publication-title: Eur. Cytokine Network – ident: e_1_2_7_27_1 doi: 10.1038/srep07925 – ident: e_1_2_7_44_1 doi: 10.2138/gsrmg.49.1.485 – ident: e_1_2_7_42_1 doi: 10.1002/anie.201001230 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201707346 – ident: e_1_2_7_47_2 doi: 10.1021/acsnano.6b00053 – ident: e_1_2_7_1_1 – ident: e_1_2_7_13_1 doi: 10.1039/C4CC04458D – ident: e_1_2_7_23_3 doi: 10.1039/C7BM00028F – ident: e_1_2_7_3_1 doi: 10.1021/nl051472k – ident: e_1_2_7_32_1 doi: 10.1039/C5CC02339D – ident: e_1_2_7_43_1 doi: 10.1021/jp0457592 – ident: e_1_2_7_47_1 doi: 10.1038/nnano.2012.207 – ident: e_1_2_7_48_1 doi: 10.1039/C3TB20832J – ident: e_1_2_7_31_1 doi: 10.1016/j.chempr.2017.02.005 – ident: e_1_2_7_25_1 doi: 10.1039/C5CC06767G – ident: e_1_2_7_55_1 doi: 10.1038/nbt.3330 – ident: e_1_2_7_5_1 doi: 10.1007/s10853-011-5709-z – ident: e_1_2_7_6_1 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.201606314 – ident: e_1_2_7_16_1 doi: 10.1021/cr200256v – ident: e_1_2_7_51_1 doi: 10.1039/c2tb00366j – ident: e_1_2_7_7_2 doi: 10.1039/C7CS90049J – ident: e_1_2_7_9_1 doi: 10.1039/C5NR06192J – ident: e_1_2_7_15_1 doi: 10.1016/j.ccr.2015.08.008 – ident: e_1_2_7_26_1 doi: 10.1021/acs.chemmater.7b02358 |
SSID | ssj0031247 |
Score | 2.5729756 |
Snippet | Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial... Controlling the outer surface of nanometric metal-organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1801900 |
SubjectTerms | Anticancer properties Biocompatibility biomedical applications of MOFs Biomedical materials Biopolymers Chemical Sciences Coating effects Colloid chemistry furtiveness Grafting Hyaluronic acid Iron Material chemistry Medicinal Chemistry Metal-organic frameworks MOF Nanoparticles Nanotechnology Organic chemistry PEGylated nanoparticles Phagocytosis Polyethylene glycol Porosity Stability Toxicity |
Title | GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201801900 https://www.ncbi.nlm.nih.gov/pubmed/30091524 https://www.proquest.com/docview/2116083488 https://www.proquest.com/docview/2086264707 https://cea.hal.science/cea-01857264 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH4qnNoDhS40ZZGpKvVkiJM4yxEB6aiaoVIBiZvl2C9CKp2pZhIO_Hqes3WGClWityR2Ettvt58_A3wOfDQSU8OJgUseCVHwzGjLLfGLjVAHQeZ2I0_O49FV9O1aXi_t4m_xIYYJNycZjb52Aq6LxdEf0NDFr1u3dCBStxvaBe0ijB14_umPAT8qJOPVnK5CNos74K0etdEPjlZfX7FKazcuJ_Jvh3PVf20MUP4adN_0Nu_k52FdFYfm_hGq4__0bRM2Ou-UHbfstAUvcPoGXi1hFr6F_Otcl1WuFxW7qOelNsiWylk1Y-08BbLJ95yR8qaovEu-Y3k977XrO7jKzy5PRrw7jIEbSXaOyzBCGVkpQ-tnthSyNEjRYyJji0kaxwk9LNwJfyhSo1NLxtFkWSHIxcNSFH74Htansyl-AEbBvEyFCcMAdWTRpvTRQhgb6EyTbvY94D0xlOmQyt2BGbeqxVgOlBsfNYyPB1-G-r9bjI4na34i2g6VHLT26HisDGrlO1As8g7vhAe7PelVJ9ALRXFyTF0hdefBwVBMoujWV_QUZzXVacLDKPETD7Zblhl-FZIvS65S5EHQEP4fDVUXk_F4uPv4nJd24KW7bhMPd2G9mte4Rw5UVew3QvIAiLoPmg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcoAeCuVRAi11ERInt3ES53GsEOlCs0WircTNcmxHSG130W7SA7-embzogiokOMaxE79m5ht7_BngbeA7I11qOE7gikdClDwz2nKL88VGTgdBRqeRp6fx5CL69FUO0YR0FqbjhxgX3EgyWn1NAk4L0oe_WEOX11e0dyBSOg6NXvv9dpOOcNGXkUEqRPPV3q-CVosT9dbA2-gHh6vlV-zSvW8UFfkn5FxFsK0Jyh9BOVS-izy5PGjq8sD8-I3X8b9a9xg2e4DKjroZtQVrbvYENm7RFj6F_HihqzrXy5qdNYtKG8duvWf1nHVLFY5NP-cM9Tc65n38HcubxaBgn8FF_uH8_YT39zFwI9HUcRlGTkZWytD6ma2ErIxDBzKRsXVJGscJJpZ0yZ8TqdGpRftosqwUiPJcJUo_fA7rs_nMvQCG_rxMhQnDwOnIOpviR0thbKAzjerZ94APo6FMT1ZOd2ZcqY5mOVDUP2rsHw_ejfm_dzQdd-Z8g4M7ZiJ27clRoYzTyideLASIN8KDnWHsVS_TS4WucoxNQY3nwf74GqWRtlj0zM0bzNN6iFHiJx5sd3Nm_FWIcBbRUuRB0I78XyqqzqZFMT69_JdCe_Bgcj4tVPHx9OQVPKT0Lg5xB9brReN2EU_V5etWYn4Cj_kTuA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAcKK9CoIBBSJzcxomdx7FqGxbYLYhSqTfLsSdCouxWuwkHfj3jvNgFISQ4xrETv2bmG3v8GeBlFKJVmFlOE7jiUoiS59Y47mi-OIkminJ_Gnl2kkzO5Ntzdb52ir_jhxgX3LxktPraC_ilq_Z_koauvl74rQOR-dPQ5LRfkwnZSg-LPo4EUjFZr_Z6FTJa3DNvDbSNYbS_WX7DLF397IMif0ecmwC2tUDFNpih7l3gyZe9pi737PdfaB3_p3G34VYPT9lBN5_uwBWc34Wba6SF96B4vTRVXZhVzU6bZWUssrX3rF6wbqEC2ex9wUh7k1veR9-xolkO6vU-nBXHnw4nvL-NgVtFho6rWKKSTqnYhbmrhKoskvuYqsRhmiVJSomlv-IPRWZN5sg62jwvBWE8rEQZxjuwNV_M8SEw8uZVJmwcR2ikQ5fRR0thXWRyQ8o5DIAPg6FtT1Xub8y40B3JcqR9_-ixfwJ4Nea_7Eg6_pjzBY3tmMlza08Optqi0aFnxSJ4-E0EsDsMve4leqXJUU6oKaTvAng-viZZ9BssZo6LhvK0_qFMwzSAB92UGX8VE5glrCQDiNqB_0tF9elsOh2fHv1LoWdw_cNRoadvTt49hhs-uQtC3IWtetngEwJTdfm0lZcfONISZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraftFast+Surface+Engineering+to+Improve+MOF+Nanoparticles+Furtiveness&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gim%C3%A9nez-Marqu%C3%A9s%2C+M%C3%B3nica&rft.au=Bellido%2C+Elena&rft.au=Berthelot%2C+Thomas&rft.au=Sim%C3%B3n-Yarza%2C+Teresa&rft.date=2018-10-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=14&rft.issue=40&rft.spage=e1801900&rft_id=info:doi/10.1002%2Fsmll.201801900&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |