Mixed Problem for a Higher-Order Nonlinear Pseudoparabolic Equation

We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique so...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 254; no. 6; pp. 776 - 787
Main Authors Yuldashev, T. K., Shabadikov, K. Kh
Format Journal Article
LanguageEnglish
Published New York Springer US 02.05.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
DOI10.1007/s10958-021-05339-w

Cover

Abstract We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters.
AbstractList We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters.
We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters. Keywords and phrases: pseudoparabolic equation, generalized derivative, method of successive approximations, parameter, unique solvability. AMS Subject Classification: 35A02, 35M10, 35S05
We examine the unique generalized solvability of the mixed problem for a higher-order non-linear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters. Keywords and phrases: pseudoparabolic equation, generalized derivative, method of successive approximations, parameter, unique solvability. AMS Subject Classification: 35A02, 35M10, 35S05
We examine the unique generalized solvability of the mixed problem for a higher-order non-linear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters.
Audience Academic
Author Yuldashev, T. K.
Shabadikov, K. Kh
Author_xml – sequence: 1
  givenname: T. K.
  surname: Yuldashev
  fullname: Yuldashev, T. K.
  email: tursun.k.yuldashev@gmail.com
  organization: Reshetnev Siberian State University of Science and Technology
– sequence: 2
  givenname: K. Kh
  surname: Shabadikov
  fullname: Shabadikov, K. Kh
  organization: Fergana State University
BookMark eNqNkktr3DAUhU1JoUnaP9CVoasulF5JI0tehiFNAnnRx1rI8pWr4LEmks2k_75KppCZMkyDFhKX75wjuOeoOBjCgEXxkcIJBZBfEoVaKAKMEhCc12T1pjikQnKiZC0O8hskI5zL2bviKKV7yKJK8cNifu0fsS3vYmh6XJQuxNKUF777hZHcxhZjeROG3g9oYnmXcGrD0kTThN7b8uxhMqMPw_virTN9wg9_7-Pi59ezH_MLcnV7fjk_vSJWULYillVCONE0wjlmEBVtZzCjIACBgVRuBlzYBhS2VlWWPg2daWoGdUMblPy4-LT2XcbwMGEa9X2Y4pAjNcsJvJZC0ReqMz1qP7gwRmMXPll9KjkIoaCq9lJVJqRgFcsU2UF1OGA0fd6A83m85foaftP_ZAefT4sLb3cGvEqwmfB5S5CZER_Hzkwp6cvv37bN_8du-qo1a2NIKaLT1o_Pbcgf8r2moJ-KqdfF1LmY-rmYepWl7B_pMvqFib_3i_halDI8dBhfdr9H9QeoWfF5
CitedBy_id crossref_primary_10_1134_S1995080222050043
crossref_primary_10_1134_S1995080224604089
crossref_primary_10_1134_S1995080224606039
crossref_primary_10_1134_S1995080223030034
crossref_primary_10_1134_S1995080222030118
crossref_primary_10_1134_S1995080222030210
Cites_doi 10.1070/RM1960v015n02ABEH004217
10.1515/fca-2015-0051
10.1134/S0374064116120074
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-021-05339-w
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList









DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 787
ExternalDocumentID A730558066
A680675262
10_1007_s10958_021_05339_w
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ID FETCH-LOGICAL-c512w-c2655f5bb5ff2aee81d4041050e02078f4035cb08edc86c10207fab9209b1be73
IEDL.DBID AGYKE
ISSN 1072-3374
IngestDate Wed Sep 17 23:57:25 EDT 2025
Tue Jun 17 21:45:50 EDT 2025
Tue Jun 17 21:30:20 EDT 2025
Thu Jun 12 23:14:17 EDT 2025
Thu Jun 12 23:47:48 EDT 2025
Tue Jun 10 20:47:54 EDT 2025
Tue Jun 10 20:27:52 EDT 2025
Fri Jun 27 03:58:39 EDT 2025
Fri Jun 27 05:02:07 EDT 2025
Wed Oct 01 02:23:43 EDT 2025
Thu Apr 24 23:01:01 EDT 2025
Fri Feb 21 02:48:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords pseudoparabolic equation
35A02
method of successive approximations
parameter
35M10
generalized derivative
35S05
unique solvability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512w-c2655f5bb5ff2aee81d4041050e02078f4035cb08edc86c10207fab9209b1be73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2512397581
PQPubID 2043545
PageCount 12
ParticipantIDs proquest_journals_2512397581
gale_infotracmisc_A730558066
gale_infotracmisc_A680675262
gale_infotracgeneralonefile_A730558066
gale_infotracgeneralonefile_A680675262
gale_infotracacademiconefile_A730558066
gale_infotracacademiconefile_A680675262
gale_incontextgauss_ISR_A730558066
gale_incontextgauss_ISR_A680675262
crossref_citationtrail_10_1007_s10958_021_05339_w
crossref_primary_10_1007_s10958_021_05339_w
springer_journals_10_1007_s10958_021_05339_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210502
PublicationDateYYYYMMDD 2021-05-02
PublicationDate_xml – month: 05
  year: 2021
  text: 20210502
  day: 02
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle A Translation of Selected Russian- and Ukrainian-language Serial Publications in Mathematics
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Il’inVAMoiseevEIOptimization for an arbitrary sufficiently large time period for the boundary control of string oscillations by an elastic forceDiffer. Uravn.20064212169917112347125
YuldashevaAVOn a problem for a quasilinear equation of even orderItogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory201714043493799894
V. A. Il’in, “Solvability of mixed problems for hyperbolic and parabolic equations,” Usp. Mat. Nauk, 15, No. 2 (92), 97–154 (1960).
PokhozhaevSIOn the solvability of quasilinear elliptic equations of arbitrary orderMat. Sb.198211722512656447720491.35020
T. K. Yuldashev, “Mixed problem for a nonlinear integro-differential equation with a higher-order parabolic operator,” Zh. Vychisl. Mat. Mat, Fiz., 52, No. 1, 112–123 (2012).
AlexandrovVMKovalenkoEVProblems of Continuum Mechanics with Mixed Boundary Conditions [in Russian]1986MoscowNauka
SkrypnikIVHigher-Order Nonlinear Elliptic Equations [in Russian]1973KievNaukova Dumka
KoshanovBDSoldatovAPBoundary-value problem with normal derivatives for a higher-order elliptic equation on the planeDiffer. Uravn.201652121666168136046801368.35102
YuldashevTKInverse problem for a nonlinear integro-differential equation with a higher-order hyperbolic operatorVestn. Yuzhno-Ural. Univ. Ser. Mat. Mekh. Fiz.201351697530592931331.45007
ZamyshlyaevaAAHigher-order mathematical models of Sobolev typeVestn. Yuzhno-Ural. Univ. Ser. Mat. Model. Program.2014725281335.35149
KarimovSTOn a method for solving the Cauchy problem for a one-dimensional multiwave equation with a singular Bessel operatorIzv. Vyssh. Ucheb. Zaved. Mat.201782741
TodorovTGOn the continuity of bounded generalized solutions of higher-order quasilinear elliptic equationsVestn. Leningrad. Univ.1975195663402250
AlgazinSDKiykoIAFlutter of Plates and Shells [in Russian]2006MoscowNauka
KarimovSTMultidimensional generalized Erd´elyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficientsFract. Calc. Appl. Anal.2015184845861337739810.1515/fca-2015-0051
TK Yuldashev (5339_CR12) 2013; 5
BD Koshanov (5339_CR7) 2016; 52
AV Yuldasheva (5339_CR13) 2017; 140
VM Alexandrov (5339_CR1) 1986
VA Il’in (5339_CR4) 2006; 42
SI Pokhozhaev (5339_CR8) 1982; 117
5339_CR11
IV Skrypnik (5339_CR9) 1973
ST Karimov (5339_CR5) 2015; 18
ST Karimov (5339_CR6) 2017; 8
TG Todorov (5339_CR10) 1975; 19
AA Zamyshlyaeva (5339_CR14) 2014; 7
SD Algazin (5339_CR2) 2006
5339_CR3
References_xml – reference: V. A. Il’in, “Solvability of mixed problems for hyperbolic and parabolic equations,” Usp. Mat. Nauk, 15, No. 2 (92), 97–154 (1960).
– reference: KoshanovBDSoldatovAPBoundary-value problem with normal derivatives for a higher-order elliptic equation on the planeDiffer. Uravn.201652121666168136046801368.35102
– reference: AlexandrovVMKovalenkoEVProblems of Continuum Mechanics with Mixed Boundary Conditions [in Russian]1986MoscowNauka
– reference: Il’inVAMoiseevEIOptimization for an arbitrary sufficiently large time period for the boundary control of string oscillations by an elastic forceDiffer. Uravn.20064212169917112347125
– reference: PokhozhaevSIOn the solvability of quasilinear elliptic equations of arbitrary orderMat. Sb.198211722512656447720491.35020
– reference: SkrypnikIVHigher-Order Nonlinear Elliptic Equations [in Russian]1973KievNaukova Dumka
– reference: ZamyshlyaevaAAHigher-order mathematical models of Sobolev typeVestn. Yuzhno-Ural. Univ. Ser. Mat. Model. Program.2014725281335.35149
– reference: KarimovSTOn a method for solving the Cauchy problem for a one-dimensional multiwave equation with a singular Bessel operatorIzv. Vyssh. Ucheb. Zaved. Mat.201782741
– reference: KarimovSTMultidimensional generalized Erd´elyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficientsFract. Calc. Appl. Anal.2015184845861337739810.1515/fca-2015-0051
– reference: YuldashevaAVOn a problem for a quasilinear equation of even orderItogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory201714043493799894
– reference: TodorovTGOn the continuity of bounded generalized solutions of higher-order quasilinear elliptic equationsVestn. Leningrad. Univ.1975195663402250
– reference: T. K. Yuldashev, “Mixed problem for a nonlinear integro-differential equation with a higher-order parabolic operator,” Zh. Vychisl. Mat. Mat, Fiz., 52, No. 1, 112–123 (2012).
– reference: AlgazinSDKiykoIAFlutter of Plates and Shells [in Russian]2006MoscowNauka
– reference: YuldashevTKInverse problem for a nonlinear integro-differential equation with a higher-order hyperbolic operatorVestn. Yuzhno-Ural. Univ. Ser. Mat. Mekh. Fiz.201351697530592931331.45007
– volume: 7
  start-page: 5
  issue: 2
  year: 2014
  ident: 5339_CR14
  publication-title: Vestn. Yuzhno-Ural. Univ. Ser. Mat. Model. Program.
– ident: 5339_CR3
  doi: 10.1070/RM1960v015n02ABEH004217
– volume-title: Flutter of Plates and Shells [in Russian]
  year: 2006
  ident: 5339_CR2
– ident: 5339_CR11
– volume-title: Problems of Continuum Mechanics with Mixed Boundary Conditions [in Russian]
  year: 1986
  ident: 5339_CR1
– volume: 117
  start-page: 251
  issue: 2
  year: 1982
  ident: 5339_CR8
  publication-title: Mat. Sb.
– volume-title: Higher-Order Nonlinear Elliptic Equations [in Russian]
  year: 1973
  ident: 5339_CR9
– volume: 5
  start-page: 69
  issue: 1
  year: 2013
  ident: 5339_CR12
  publication-title: Vestn. Yuzhno-Ural. Univ. Ser. Mat. Mekh. Fiz.
– volume: 18
  start-page: 845
  issue: 4
  year: 2015
  ident: 5339_CR5
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2015-0051
– volume: 42
  start-page: 1699
  issue: 12
  year: 2006
  ident: 5339_CR4
  publication-title: Differ. Uravn.
– volume: 8
  start-page: 27
  year: 2017
  ident: 5339_CR6
  publication-title: Izv. Vyssh. Ucheb. Zaved. Mat.
– volume: 19
  start-page: 56
  year: 1975
  ident: 5339_CR10
  publication-title: Vestn. Leningrad. Univ.
– volume: 140
  start-page: 43
  year: 2017
  ident: 5339_CR13
  publication-title: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory
– volume: 52
  start-page: 1666
  issue: 12
  year: 2016
  ident: 5339_CR7
  publication-title: Differ. Uravn.
  doi: 10.1134/S0374064116120074
SSID ssj0007683
Score 2.2096775
Snippet We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed...
We examine the unique generalized solvability of the mixed problem for a higher-order non-linear pseudoparabolic equation with two parameters in mixed...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 776
SubjectTerms Approximation
Differential equations
Integral equations
Mathematics
Mathematics and Statistics
Parameters
Title Mixed Problem for a Higher-Order Nonlinear Pseudoparabolic Equation
URI https://link.springer.com/article/10.1007/s10958-021-05339-w
https://www.proquest.com/docview/2512397581
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-8795
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: AFBBN
  dateStart: 19730101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x7gUe-I3WMSoLIXiATKkT28ljN7UMUMsEVBpPlu04EwK1Y2lVxF-Pr3a6ZpSivcafT_bZPp_ju88AL8pYu41VFJHBs0lqErSDPI-KRAtNlXFzCH8NDEf8ZJy-P2NnISmsqqPd6yvJpaVeS3bLWRZhSAHmj-bRYgd2GR5QWrDbe_v1Q39lgZ0L7QPrBY2SRKQhWWazlMaGdN0s_3U_utx2BvdgXDfYR5t8P5zP9KH5fY3L8aY9ug93gx9Ken7iPIBbdvIQ7gxXJK7VIzgefvtlC3Lqn5whzrslivi4kOgjMnaSkefZUJfktLLzYoo84hqJhkn_p6cQfwzjQf_L8UkU3lyIjNv6F5GhnLGSac3KkiprnTubxhgKGls3mCIr0zhhRseZLUzGTRc_lkrnNM51V1uRPIHWZDqxe0CYMTxRQhthspQJpRhPEl2owgp3LBFFG7q14qUJhOT4LsYPeUWljAqSTkFyqSC5aMPrVZ0LT8exFf0cx1Miz8UEA2nO1byq5LvPn2SPZ3hWopxuAwnkQ3NA3oZXAVROXRuNCskLrqfIn9UQ9x_kmsyXDeS55xnfJHI7cE3iQQPoLIVpyNlUvF67nvYyGLJKovvrXFaWddvwpp7FV8X_1v3-zeBP4Tb1C8GthwNozS7n9plz92a641b34Oho1AmrvAM7Y9r7A0H8Sb8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeoAeeCMCBSyE4ACu9uX17jGqUlLahAoaqZws2-utqlZJ200UxK_HE3vTbAlBva4_j-yxPR6vZz4DvC8DZTdWXlCNZ5NEx2gH05wWseIqktrOIfw10B-kvWHy9Zgd-6Swqo52r68k55Z6KdktZxnFkALMH83p7C5sJGGWJS3Y6Hz5ud9dWGDrQrvAeh7ROOaJT5ZZLaWxId00y3_dj863nd2HMKwb7KJNzranE7Wtf9_gcrxtjx7BA--Hko6bOI_hjhk9gc3-gsS1ego7_dNfpiCH7skZYr1bIomLC6HfkLGTDBzPhrwih5WZFmPkEVdINEy6l45C_BkMd7tHOz3q31yg2m79M6qjlLGSKcXKMpLGWHc2CTAUNDB2MHlWJkHMtAoyU-gs1SF-LKXKoyBXoTI8fg6t0XhkXgBhWqex5EpznSWMS8nSOFaFLAy3xxJetCGsFS-0JyTHdzHOxTWVMipIWAWJuYLErA2fFnUuHB3HWvQ7HE-BPBcjDKQ5kdOqEns_votOmuFZKUqjdSCOfGgWmLbhoweVY9tGLX3ygu0p8mc1xP0HuSTzQwN54njGV4lcD1ySuNUAWkuhG3JWFS_Xrqe98IasEuj-WpeVZWEbPtez-Lr437p_eTv4W7jXO-ofiIO9wf4ruB-5RWHXxha0JldT89q6fhP1xq_0P98RSks
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGJiF4QIyLVhjMQggewFpqx3byWI1VG9BSAZX2ZvmWadKUjqVV-fn41GmXsK6I1_jLUXLic3F8zmeE3haJCYFVOmJhbZJaBn5Q5MQxIw3VNswh-DUwGIqTcfr5jJ81uvgX1e7LLcnY0wAsTeX08MoVh43Gt5xnBMoLoJc0J_N7aCcNsRqWX2PaW_nikEzHEntJCWMyrdtm1stohaa_HfStndJFAOo_Ro_qzBH34qfeRVu-fIIeDla0q9VTdDS4-O0dHsVDYnDIR7HGsZKDfAOOTTyMzBj6Go8qP3MTYP42QA2Mj39F0u9naNw__nl0QupTEogNwXpOLBWcF9wYXhRUex8S0DSB4s3EB_XLrEgTxq1JMu9sJmwXLhba5DTJTdd4yZ6j7XJS-j2EubWCaWmstFnKpdZcMGacdl6GhYR0HdRdKkjZmkIcTrK4VDfkx6BUFZSqFkpV8w76sLrnKhJobES_Ab0rYKYoofTlXM-qSp3--K56IoPVDRV0E0gCg1kAig56X4OKSXhGq-t2g_CmwHjVEvcPZEPmuxbyPDKDrxO5GdiQuN8CBtu2LTnrhpt3L6enql1PpSBhDUkmz7od9HE5ZW-G79b9i_-DH6D7o0999fV0-OUlekCjHQVz2kfb0-uZfxVytal5vTDHP0TDMUo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIXED+PROBLEM+FOR+A+HIGHER-ORDER+NONLINEAR+PSEUDOPARABOLIC+EQUATION&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Yuldashev%2C+T.K&rft.au=Shabadikov%2C+K.Kh&rft.date=2021-05-02&rft.pub=Springer&rft.issn=1072-3374&rft.volume=254&rft.issue=6&rft.spage=776&rft_id=info:doi/10.1007%2Fs10958-021-05339-w&rft.externalDBID=ISR&rft.externalDocID=A680675262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon