Mixed Problem for a Higher-Order Nonlinear Pseudoparabolic Equation
We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique so...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 254; no. 6; pp. 776 - 787 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
02.05.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-021-05339-w |
Cover
Abstract | We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters. |
---|---|
AbstractList | We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters. We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters. Keywords and phrases: pseudoparabolic equation, generalized derivative, method of successive approximations, parameter, unique solvability. AMS Subject Classification: 35A02, 35M10, 35S05 We examine the unique generalized solvability of the mixed problem for a higher-order non-linear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters. Keywords and phrases: pseudoparabolic equation, generalized derivative, method of successive approximations, parameter, unique solvability. AMS Subject Classification: 35A02, 35M10, 35S05 We examine the unique generalized solvability of the mixed problem for a higher-order non-linear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters. |
Audience | Academic |
Author | Yuldashev, T. K. Shabadikov, K. Kh |
Author_xml | – sequence: 1 givenname: T. K. surname: Yuldashev fullname: Yuldashev, T. K. email: tursun.k.yuldashev@gmail.com organization: Reshetnev Siberian State University of Science and Technology – sequence: 2 givenname: K. Kh surname: Shabadikov fullname: Shabadikov, K. Kh organization: Fergana State University |
BookMark | eNqNkktr3DAUhU1JoUnaP9CVoasulF5JI0tehiFNAnnRx1rI8pWr4LEmks2k_75KppCZMkyDFhKX75wjuOeoOBjCgEXxkcIJBZBfEoVaKAKMEhCc12T1pjikQnKiZC0O8hskI5zL2bviKKV7yKJK8cNifu0fsS3vYmh6XJQuxNKUF777hZHcxhZjeROG3g9oYnmXcGrD0kTThN7b8uxhMqMPw_virTN9wg9_7-Pi59ezH_MLcnV7fjk_vSJWULYillVCONE0wjlmEBVtZzCjIACBgVRuBlzYBhS2VlWWPg2daWoGdUMblPy4-LT2XcbwMGEa9X2Y4pAjNcsJvJZC0ReqMz1qP7gwRmMXPll9KjkIoaCq9lJVJqRgFcsU2UF1OGA0fd6A83m85foaftP_ZAefT4sLb3cGvEqwmfB5S5CZER_Hzkwp6cvv37bN_8du-qo1a2NIKaLT1o_Pbcgf8r2moJ-KqdfF1LmY-rmYepWl7B_pMvqFib_3i_halDI8dBhfdr9H9QeoWfF5 |
CitedBy_id | crossref_primary_10_1134_S1995080222050043 crossref_primary_10_1134_S1995080224604089 crossref_primary_10_1134_S1995080224606039 crossref_primary_10_1134_S1995080223030034 crossref_primary_10_1134_S1995080222030118 crossref_primary_10_1134_S1995080222030210 |
Cites_doi | 10.1070/RM1960v015n02ABEH004217 10.1515/fca-2015-0051 10.1134/S0374064116120074 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-021-05339-w |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 787 |
ExternalDocumentID | A730558066 A680675262 10_1007_s10958_021_05339_w |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB |
ID | FETCH-LOGICAL-c512w-c2655f5bb5ff2aee81d4041050e02078f4035cb08edc86c10207fab9209b1be73 |
IEDL.DBID | AGYKE |
ISSN | 1072-3374 |
IngestDate | Wed Sep 17 23:57:25 EDT 2025 Tue Jun 17 21:45:50 EDT 2025 Tue Jun 17 21:30:20 EDT 2025 Thu Jun 12 23:14:17 EDT 2025 Thu Jun 12 23:47:48 EDT 2025 Tue Jun 10 20:47:54 EDT 2025 Tue Jun 10 20:27:52 EDT 2025 Fri Jun 27 03:58:39 EDT 2025 Fri Jun 27 05:02:07 EDT 2025 Wed Oct 01 02:23:43 EDT 2025 Thu Apr 24 23:01:01 EDT 2025 Fri Feb 21 02:48:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | pseudoparabolic equation 35A02 method of successive approximations parameter 35M10 generalized derivative 35S05 unique solvability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512w-c2655f5bb5ff2aee81d4041050e02078f4035cb08edc86c10207fab9209b1be73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2512397581 |
PQPubID | 2043545 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2512397581 gale_infotracmisc_A730558066 gale_infotracmisc_A680675262 gale_infotracgeneralonefile_A730558066 gale_infotracgeneralonefile_A680675262 gale_infotracacademiconefile_A730558066 gale_infotracacademiconefile_A680675262 gale_incontextgauss_ISR_A730558066 gale_incontextgauss_ISR_A680675262 crossref_citationtrail_10_1007_s10958_021_05339_w crossref_primary_10_1007_s10958_021_05339_w springer_journals_10_1007_s10958_021_05339_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210502 |
PublicationDateYYYYMMDD | 2021-05-02 |
PublicationDate_xml | – month: 05 year: 2021 text: 20210502 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | A Translation of Selected Russian- and Ukrainian-language Serial Publications in Mathematics |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Il’inVAMoiseevEIOptimization for an arbitrary sufficiently large time period for the boundary control of string oscillations by an elastic forceDiffer. Uravn.20064212169917112347125 YuldashevaAVOn a problem for a quasilinear equation of even orderItogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory201714043493799894 V. A. Il’in, “Solvability of mixed problems for hyperbolic and parabolic equations,” Usp. Mat. Nauk, 15, No. 2 (92), 97–154 (1960). PokhozhaevSIOn the solvability of quasilinear elliptic equations of arbitrary orderMat. Sb.198211722512656447720491.35020 T. K. Yuldashev, “Mixed problem for a nonlinear integro-differential equation with a higher-order parabolic operator,” Zh. Vychisl. Mat. Mat, Fiz., 52, No. 1, 112–123 (2012). AlexandrovVMKovalenkoEVProblems of Continuum Mechanics with Mixed Boundary Conditions [in Russian]1986MoscowNauka SkrypnikIVHigher-Order Nonlinear Elliptic Equations [in Russian]1973KievNaukova Dumka KoshanovBDSoldatovAPBoundary-value problem with normal derivatives for a higher-order elliptic equation on the planeDiffer. Uravn.201652121666168136046801368.35102 YuldashevTKInverse problem for a nonlinear integro-differential equation with a higher-order hyperbolic operatorVestn. Yuzhno-Ural. Univ. Ser. Mat. Mekh. Fiz.201351697530592931331.45007 ZamyshlyaevaAAHigher-order mathematical models of Sobolev typeVestn. Yuzhno-Ural. Univ. Ser. Mat. Model. Program.2014725281335.35149 KarimovSTOn a method for solving the Cauchy problem for a one-dimensional multiwave equation with a singular Bessel operatorIzv. Vyssh. Ucheb. Zaved. Mat.201782741 TodorovTGOn the continuity of bounded generalized solutions of higher-order quasilinear elliptic equationsVestn. Leningrad. Univ.1975195663402250 AlgazinSDKiykoIAFlutter of Plates and Shells [in Russian]2006MoscowNauka KarimovSTMultidimensional generalized Erd´elyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficientsFract. Calc. Appl. Anal.2015184845861337739810.1515/fca-2015-0051 TK Yuldashev (5339_CR12) 2013; 5 BD Koshanov (5339_CR7) 2016; 52 AV Yuldasheva (5339_CR13) 2017; 140 VM Alexandrov (5339_CR1) 1986 VA Il’in (5339_CR4) 2006; 42 SI Pokhozhaev (5339_CR8) 1982; 117 5339_CR11 IV Skrypnik (5339_CR9) 1973 ST Karimov (5339_CR5) 2015; 18 ST Karimov (5339_CR6) 2017; 8 TG Todorov (5339_CR10) 1975; 19 AA Zamyshlyaeva (5339_CR14) 2014; 7 SD Algazin (5339_CR2) 2006 5339_CR3 |
References_xml | – reference: V. A. Il’in, “Solvability of mixed problems for hyperbolic and parabolic equations,” Usp. Mat. Nauk, 15, No. 2 (92), 97–154 (1960). – reference: KoshanovBDSoldatovAPBoundary-value problem with normal derivatives for a higher-order elliptic equation on the planeDiffer. Uravn.201652121666168136046801368.35102 – reference: AlexandrovVMKovalenkoEVProblems of Continuum Mechanics with Mixed Boundary Conditions [in Russian]1986MoscowNauka – reference: Il’inVAMoiseevEIOptimization for an arbitrary sufficiently large time period for the boundary control of string oscillations by an elastic forceDiffer. Uravn.20064212169917112347125 – reference: PokhozhaevSIOn the solvability of quasilinear elliptic equations of arbitrary orderMat. Sb.198211722512656447720491.35020 – reference: SkrypnikIVHigher-Order Nonlinear Elliptic Equations [in Russian]1973KievNaukova Dumka – reference: ZamyshlyaevaAAHigher-order mathematical models of Sobolev typeVestn. Yuzhno-Ural. Univ. Ser. Mat. Model. Program.2014725281335.35149 – reference: KarimovSTOn a method for solving the Cauchy problem for a one-dimensional multiwave equation with a singular Bessel operatorIzv. Vyssh. Ucheb. Zaved. Mat.201782741 – reference: KarimovSTMultidimensional generalized Erd´elyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficientsFract. Calc. Appl. Anal.2015184845861337739810.1515/fca-2015-0051 – reference: YuldashevaAVOn a problem for a quasilinear equation of even orderItogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory201714043493799894 – reference: TodorovTGOn the continuity of bounded generalized solutions of higher-order quasilinear elliptic equationsVestn. Leningrad. Univ.1975195663402250 – reference: T. K. Yuldashev, “Mixed problem for a nonlinear integro-differential equation with a higher-order parabolic operator,” Zh. Vychisl. Mat. Mat, Fiz., 52, No. 1, 112–123 (2012). – reference: AlgazinSDKiykoIAFlutter of Plates and Shells [in Russian]2006MoscowNauka – reference: YuldashevTKInverse problem for a nonlinear integro-differential equation with a higher-order hyperbolic operatorVestn. Yuzhno-Ural. Univ. Ser. Mat. Mekh. Fiz.201351697530592931331.45007 – volume: 7 start-page: 5 issue: 2 year: 2014 ident: 5339_CR14 publication-title: Vestn. Yuzhno-Ural. Univ. Ser. Mat. Model. Program. – ident: 5339_CR3 doi: 10.1070/RM1960v015n02ABEH004217 – volume-title: Flutter of Plates and Shells [in Russian] year: 2006 ident: 5339_CR2 – ident: 5339_CR11 – volume-title: Problems of Continuum Mechanics with Mixed Boundary Conditions [in Russian] year: 1986 ident: 5339_CR1 – volume: 117 start-page: 251 issue: 2 year: 1982 ident: 5339_CR8 publication-title: Mat. Sb. – volume-title: Higher-Order Nonlinear Elliptic Equations [in Russian] year: 1973 ident: 5339_CR9 – volume: 5 start-page: 69 issue: 1 year: 2013 ident: 5339_CR12 publication-title: Vestn. Yuzhno-Ural. Univ. Ser. Mat. Mekh. Fiz. – volume: 18 start-page: 845 issue: 4 year: 2015 ident: 5339_CR5 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2015-0051 – volume: 42 start-page: 1699 issue: 12 year: 2006 ident: 5339_CR4 publication-title: Differ. Uravn. – volume: 8 start-page: 27 year: 2017 ident: 5339_CR6 publication-title: Izv. Vyssh. Ucheb. Zaved. Mat. – volume: 19 start-page: 56 year: 1975 ident: 5339_CR10 publication-title: Vestn. Leningrad. Univ. – volume: 140 start-page: 43 year: 2017 ident: 5339_CR13 publication-title: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory – volume: 52 start-page: 1666 issue: 12 year: 2016 ident: 5339_CR7 publication-title: Differ. Uravn. doi: 10.1134/S0374064116120074 |
SSID | ssj0007683 |
Score | 2.2096775 |
Snippet | We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed... We examine the unique generalized solvability of the mixed problem for a higher-order non-linear pseudoparabolic equation with two parameters in mixed... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 776 |
SubjectTerms | Approximation Differential equations Integral equations Mathematics Mathematics and Statistics Parameters |
Title | Mixed Problem for a Higher-Order Nonlinear Pseudoparabolic Equation |
URI | https://link.springer.com/article/10.1007/s10958-021-05339-w https://www.proquest.com/docview/2512397581 |
Volume | 254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-8795 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0007683 issn: 1072-3374 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-8795 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007683 issn: 1072-3374 databaseCode: AFBBN dateStart: 19730101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-8795 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007683 issn: 1072-3374 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-8795 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007683 issn: 1072-3374 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x7gUe-I3WMSoLIXiATKkT28ljN7UMUMsEVBpPlu04EwK1Y2lVxF-Pr3a6ZpSivcafT_bZPp_ju88AL8pYu41VFJHBs0lqErSDPI-KRAtNlXFzCH8NDEf8ZJy-P2NnISmsqqPd6yvJpaVeS3bLWRZhSAHmj-bRYgd2GR5QWrDbe_v1Q39lgZ0L7QPrBY2SRKQhWWazlMaGdN0s_3U_utx2BvdgXDfYR5t8P5zP9KH5fY3L8aY9ug93gx9Ken7iPIBbdvIQ7gxXJK7VIzgefvtlC3Lqn5whzrslivi4kOgjMnaSkefZUJfktLLzYoo84hqJhkn_p6cQfwzjQf_L8UkU3lyIjNv6F5GhnLGSac3KkiprnTubxhgKGls3mCIr0zhhRseZLUzGTRc_lkrnNM51V1uRPIHWZDqxe0CYMTxRQhthspQJpRhPEl2owgp3LBFFG7q14qUJhOT4LsYPeUWljAqSTkFyqSC5aMPrVZ0LT8exFf0cx1Miz8UEA2nO1byq5LvPn2SPZ3hWopxuAwnkQ3NA3oZXAVROXRuNCskLrqfIn9UQ9x_kmsyXDeS55xnfJHI7cE3iQQPoLIVpyNlUvF67nvYyGLJKovvrXFaWddvwpp7FV8X_1v3-zeBP4Tb1C8GthwNozS7n9plz92a641b34Oho1AmrvAM7Y9r7A0H8Sb8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeoAeeCMCBSyE4ACu9uX17jGqUlLahAoaqZws2-utqlZJ200UxK_HE3vTbAlBva4_j-yxPR6vZz4DvC8DZTdWXlCNZ5NEx2gH05wWseIqktrOIfw10B-kvWHy9Zgd-6Swqo52r68k55Z6KdktZxnFkALMH83p7C5sJGGWJS3Y6Hz5ud9dWGDrQrvAeh7ROOaJT5ZZLaWxId00y3_dj863nd2HMKwb7KJNzranE7Wtf9_gcrxtjx7BA--Hko6bOI_hjhk9gc3-gsS1ego7_dNfpiCH7skZYr1bIomLC6HfkLGTDBzPhrwih5WZFmPkEVdINEy6l45C_BkMd7tHOz3q31yg2m79M6qjlLGSKcXKMpLGWHc2CTAUNDB2MHlWJkHMtAoyU-gs1SF-LKXKoyBXoTI8fg6t0XhkXgBhWqex5EpznSWMS8nSOFaFLAy3xxJetCGsFS-0JyTHdzHOxTWVMipIWAWJuYLErA2fFnUuHB3HWvQ7HE-BPBcjDKQ5kdOqEns_votOmuFZKUqjdSCOfGgWmLbhoweVY9tGLX3ygu0p8mc1xP0HuSTzQwN54njGV4lcD1ySuNUAWkuhG3JWFS_Xrqe98IasEuj-WpeVZWEbPtez-Lr437p_eTv4W7jXO-ofiIO9wf4ruB-5RWHXxha0JldT89q6fhP1xq_0P98RSks |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGJiF4QIyLVhjMQggewFpqx3byWI1VG9BSAZX2ZvmWadKUjqVV-fn41GmXsK6I1_jLUXLic3F8zmeE3haJCYFVOmJhbZJaBn5Q5MQxIw3VNswh-DUwGIqTcfr5jJ81uvgX1e7LLcnY0wAsTeX08MoVh43Gt5xnBMoLoJc0J_N7aCcNsRqWX2PaW_nikEzHEntJCWMyrdtm1stohaa_HfStndJFAOo_Ro_qzBH34qfeRVu-fIIeDla0q9VTdDS4-O0dHsVDYnDIR7HGsZKDfAOOTTyMzBj6Go8qP3MTYP42QA2Mj39F0u9naNw__nl0QupTEogNwXpOLBWcF9wYXhRUex8S0DSB4s3EB_XLrEgTxq1JMu9sJmwXLhba5DTJTdd4yZ6j7XJS-j2EubWCaWmstFnKpdZcMGacdl6GhYR0HdRdKkjZmkIcTrK4VDfkx6BUFZSqFkpV8w76sLrnKhJobES_Ab0rYKYoofTlXM-qSp3--K56IoPVDRV0E0gCg1kAig56X4OKSXhGq-t2g_CmwHjVEvcPZEPmuxbyPDKDrxO5GdiQuN8CBtu2LTnrhpt3L6enql1PpSBhDUkmz7od9HE5ZW-G79b9i_-DH6D7o0999fV0-OUlekCjHQVz2kfb0-uZfxVytal5vTDHP0TDMUo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIXED+PROBLEM+FOR+A+HIGHER-ORDER+NONLINEAR+PSEUDOPARABOLIC+EQUATION&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Yuldashev%2C+T.K&rft.au=Shabadikov%2C+K.Kh&rft.date=2021-05-02&rft.pub=Springer&rft.issn=1072-3374&rft.volume=254&rft.issue=6&rft.spage=776&rft_id=info:doi/10.1007%2Fs10958-021-05339-w&rft.externalDBID=ISR&rft.externalDocID=A680675262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |