Mixed Problem for a Higher-Order Nonlinear Pseudoparabolic Equation
We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique so...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 254; no. 6; pp. 776 - 787 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
02.05.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-021-05339-w |
Cover
Summary: | We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-021-05339-w |