Beginning at the end: Repetitive firing properties in the final common pathway

Since the early 20th century, it has been recognized that motoneurons must fire repetitive trains of action potentials to produce muscle contraction. In 1932, Sir John Eccles, together with Hebbel Hoff, found that action potential spike trains in motor axons were produced by "rhythmic centres&q...

Full description

Saved in:
Bibliographic Details
Published inProgress in neurobiology Vol. 78; no. 3-5; pp. 156 - 172
Main Author Brownstone, Robert M.
Format Journal Article
LanguageEnglish
Published England 01.02.2006
Subjects
Online AccessGet full text
ISSN0301-0082
1873-5118
DOI10.1016/j.pneurobio.2006.04.002

Cover

More Information
Summary:Since the early 20th century, it has been recognized that motoneurons must fire repetitive trains of action potentials to produce muscle contraction. In 1932, Sir John Eccles, together with Hebbel Hoff, found that action potential spike trains in motor axons were produced by "rhythmic centres", which were within the motoneurons themselves. Two decades later, Eccles attended a Cold Spring Harbor Symposium in NY, USA entitled "The Neuron". Two of the many notable presentations at this symposium were juxtaposed: one by Eccles from the University of Otago, Dunedin, NZL, and the other by J. Walter Woodbury and Harry Patton from the University of Washington, Seattle, USA. Both presentations included data obtained using sharp microelectrodes to study the intracellularly recorded potentials of cat motoneurons. In this review, I discuss some of the events leading up to and surrounding this jointly accomplished advance and proceed to discussion of subsequent studies over 5+ decades that have made use of intracellular recordings from motoneurons to study their repetitive firing behavior. This begins with early descriptions of primary and secondary range firing, and continues to the discovery of dendritic persistent inward currents and their relation to plateau potentials, synaptic amplification, and motoneuronal firing. Following a brief description of the possible mechanisms underlying spike frequency adaptation, I discuss the modulation of repetitive firing properties during various motor behaviors. It has become increasingly clear that the central nervous system has exquisite control of the repetitive firing of motoneurons. Eccles' work laid the foundation for the present-day study of these processes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
ISSN:0301-0082
1873-5118
DOI:10.1016/j.pneurobio.2006.04.002