PyDREAM: high-dimensional parameter inference for biological models in python

Abstract Summary Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distribut...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 34; no. 4; pp. 695 - 697
Main Authors Shockley, Erin M, Vrugt, Jasper A, Lopez, Carlos F
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.02.2018
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btx626

Cover

Abstract Abstract Summary Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. Availability and implementation PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. c.lopez@vanderbilt.edu. Supplementary data are available at Bioinformatics online.
Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models.
Abstract Summary Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. Availability and implementation PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. Supplementary information Supplementary data are available at Bioinformatics online.
Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models.SummaryBiological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models.PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM.Availability and implementationPyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM.c.lopez@vanderbilt.edu.Contactc.lopez@vanderbilt.edu.Supplementary data are available at Bioinformatics online.Supplementary informationSupplementary data are available at Bioinformatics online.
Author Vrugt, Jasper A
Shockley, Erin M
Lopez, Carlos F
AuthorAffiliation 2 Department of Civil and Environmental Engineering, University of California Irvine, 4130 Engineering Gateway, Irvine, CA, USA
3 Department of Earth System Science, University of California Irvine, 3200 Croul Hall St, Irvine, CA, USA
1 Department of Biochemistry, Vanderbilt University, 2215 Garland Avenue, Nashville, TN, USA
AuthorAffiliation_xml – name: 1 Department of Biochemistry, Vanderbilt University, 2215 Garland Avenue, Nashville, TN, USA
– name: 2 Department of Civil and Environmental Engineering, University of California Irvine, 4130 Engineering Gateway, Irvine, CA, USA
– name: 3 Department of Earth System Science, University of California Irvine, 3200 Croul Hall St, Irvine, CA, USA
Author_xml – sequence: 1
  givenname: Erin M
  orcidid: 0000-0001-8114-8098
  surname: Shockley
  fullname: Shockley, Erin M
  organization: Department of Biochemistry, Vanderbilt University, 2215 Garland Avenue, Nashville, TN, USA
– sequence: 2
  givenname: Jasper A
  surname: Vrugt
  fullname: Vrugt, Jasper A
  organization: Department of Civil and Environmental Engineering, University of California Irvine, 4130 Engineering Gateway, Irvine, CA, USA
– sequence: 3
  givenname: Carlos F
  orcidid: 0000-0003-3668-7468
  surname: Lopez
  fullname: Lopez, Carlos F
  email: c.lopez@vanderbilt.edu
  organization: Department of Biochemistry, Vanderbilt University, 2215 Garland Avenue, Nashville, TN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29028896$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1565685$$D View this record in Osti.gov
BookMark eNqNUV1r1jAUDrLhPvQnKMUrb-qStElTBWHM6YQNRfQ6pOnp20iadEmqvv_ejL6bzht3lcB5nvN8nCO057wDhJ4R_IrgtjrpjDdu8GFSyeh40qVfnPJH6JDUHJcUs3Yv_yvelLXA1QE6ivE7xozUdf0YHdAWUyFafoiuPm_ffTk_vXpdjGYzlr2ZwEXjnbLFrIKaIEEoshAEcBqKLFhkZes3RmfI5HuwMc-LeZtG756g_UHZCE937zH69v7869lFefnpw8ez08tSM0JTWVMmGs0H0VE-9KB4VdGeqpZS3daq40PDmOZU9JgB1HVFekqFxr2gLemA6eoY8XXv4ma1_amslXMwkwpbSbC86Ufe70eu_WTi25U4L90EvQaXgvpD9srI-xNnRrnxPyQTHHPc5AUv1gU-JiOjNgn0qL1zoJMkjDMuWAa93KkEf71ATHIyUYO1yoFfoiRtPgRpVkPP_zZ05-T2QhnAVoAOPsYAw4OTvvmHl71mhL_JZex_2XgXc5kfKPgbLADUdg
CitedBy_id crossref_primary_10_1016_j_jhydrol_2023_129931
crossref_primary_10_1007_s00024_018_1870_5
crossref_primary_10_3389_fgene_2023_1254966
crossref_primary_10_1016_j_jhydrol_2023_129670
crossref_primary_10_1016_j_bpj_2023_01_035
crossref_primary_10_1016_j_isci_2024_109989
crossref_primary_10_1103_PhysRevB_110_174417
crossref_primary_10_1016_j_hydroa_2021_100093
crossref_primary_10_1093_bioinformatics_btac630
crossref_primary_10_3847_1538_4357_acd846
crossref_primary_10_1242_dev_200295
crossref_primary_10_1016_j_cels_2020_06_012
crossref_primary_10_1016_j_coisb_2019_09_005
crossref_primary_10_1038_s41598_021_92140_z
crossref_primary_10_3389_fgene_2020_00686
crossref_primary_10_15252_msb_20199361
crossref_primary_10_1016_j_jsv_2021_116601
crossref_primary_10_1371_journal_pcbi_1011004
crossref_primary_10_1371_journal_pcbi_1009035
crossref_primary_10_1371_journal_pcbi_1010651
crossref_primary_10_1098_rsfs_2018_0039
crossref_primary_10_5194_tc_16_5061_2022
crossref_primary_10_1126_science_aba7667
crossref_primary_10_1016_j_jsv_2021_116741
crossref_primary_10_1038_s41467_023_41518_w
crossref_primary_10_1029_2024WR038360
crossref_primary_10_1073_pnas_1819230116
crossref_primary_10_1016_j_jcp_2023_112250
crossref_primary_10_1093_bioinformatics_btz542
crossref_primary_10_1016_j_jhydrol_2024_132016
crossref_primary_10_1016_j_isci_2019_08_045
crossref_primary_10_1093_bioinformatics_btac004
crossref_primary_10_1371_journal_pcbi_1008208
crossref_primary_10_1016_j_coisb_2021_05_004
crossref_primary_10_1016_j_envsoft_2022_105453
crossref_primary_10_1029_2020WR028908
crossref_primary_10_1091_mbc_E20_08_0530
crossref_primary_10_5194_esurf_10_687_2022
crossref_primary_10_1029_2024WR038779
crossref_primary_10_1093_bioinformatics_btab061
crossref_primary_10_2139_ssrn_3382545
crossref_primary_10_3389_fimmu_2021_748423
crossref_primary_10_1242_dev_202503
crossref_primary_10_3390_electronics8060630
Cites_doi 10.1080/01621459.2000.10473908
10.1023/A:1008202821328
10.1515/IJNSNS.2009.10.3.273
10.1039/c2mb25190f
10.1073/pnas.1507307112
10.1029/2009WR008933
10.1038/msb.2013.1
10.1007/s11222-008-9104-9
10.1186/1471-2105-10-371
10.1038/msb.2012.69
10.1007/s11222-008-9110-y
10.1242/jcs.112045
10.1088/0004-637X/753/2/148
10.1029/2011WR010608
10.1038/msb.2010.6
10.1371/journal.pcbi.1003278
10.1007/s11222-006-8769-1
10.1016/j.envsoft.2015.08.013
10.1088/1478-3975/12/4/045007
10.1103/PhysRevE.68.021904
ContentType Journal Article
Copyright The Author 2017. Published by Oxford University Press. 2017
The Author(s) 2017. Published by Oxford University Press.
Copyright_xml – notice: The Author 2017. Published by Oxford University Press. 2017
– notice: The Author(s) 2017. Published by Oxford University Press.
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btx626
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 697
ExternalDocumentID 10.1093/bioinformatics/btx626
PMC5860607
1565685
29028896
10_1093_bioinformatics_btx626
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  grantid: MCB-1411482
  funderid: 10.13039/100000001
– fundername: NIH
  grantid: 5T32GM065086
  funderid: 10.13039/100000002
– fundername: NIGMS NIH HHS
  grantid: T32 GM065086
– fundername: ; ;
  grantid: MCB-1411482
– fundername: ; ;
  grantid: 5T32GM065086
GroupedDBID -~X
.2P
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
F5P
HW0
Q5Y
RD5
ROZ
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
M49
NPM
ROX
7X8
1TH
NVLIB
OIOZB
OTOTI
5PM
.-4
.GJ
ABEFU
ABNGD
ACUKT
ADTOC
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
C1A
CAG
COF
ELUNK
HVGLF
NTWIH
O0~
O~Y
PB-
RNI
RZF
RZO
UNPAY
VH1
ZGI
ID FETCH-LOGICAL-c512t-42587c6f8b26fdea6332d2a922c94ab6f755c628d05ee4431d228c0d8291be5c3
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Sun Oct 26 04:04:17 EDT 2025
Thu Aug 21 14:11:18 EDT 2025
Mon Jun 23 02:30:24 EDT 2025
Wed Oct 01 14:23:16 EDT 2025
Wed Feb 19 02:36:11 EST 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Jul 01 03:27:23 EDT 2025
Wed Apr 02 07:03:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2017. Published by Oxford University Press.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-42587c6f8b26fdea6332d2a922c94ab6f755c628d05ee4431d228c0d8291be5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science
National Science Foundation (NSF)
AC05-00OR22725
None
National Institutes of Health (NIH)
ORCID 0000-0001-8114-8098
0000-0003-3668-7468
0000000181148098
0000000336687468
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/34/4/695/25117213/btx626.pdf
PMID 29028896
PQID 1951417626
PQPubID 23479
PageCount 3
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btx626
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5860607
osti_scitechconnect_1565685
proquest_miscellaneous_1951417626
pubmed_primary_29028896
crossref_primary_10_1093_bioinformatics_btx626
crossref_citationtrail_10_1093_bioinformatics_btx626
oup_primary_10_1093_bioinformatics_btx626
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Neumann (2023012712404841600_btx626-B14) 2010; 6
Bovy (2023012712404841600_btx626-B2) 2012; 753
Vrugt (2023012712404841600_btx626-B23) 2009; 10
Shankaran (2023012712404841600_btx626-B17) 2012; 8
Suderman (2023012712404841600_btx626-B19) 2013; 9
Andrieu (2023012712404841600_btx626-B1) 2008; 18
Storn (2023012712404841600_btx626-B18) 1997; 11
Klinke (2023012712404841600_btx626-B9) 2009; 10
Lopez (2023012712404841600_btx626-B12) 2013; 9
Thomas (2023012712404841600_btx626-B21) 2015; 32
Schoups (2023012712404841600_btx626-B16) 2010; 46
ter Braak (2023012712404841600_btx626-B20) 2006; 16
Vrugt (2023012712404841600_btx626-B24) 2016; 75
Brown (2023012712404841600_btx626-B3) 2003; 68
Jones (2023012712404841600_btx626-B8) 2001
Liu (2023012712404841600_btx626-B11) 2000; 95
Janes (2023012712404841600_btx626-B7) 2013; 126
Mitchener (2023012712404841600_btx626-B13) 2015; 112
Price (2023012712404841600_btx626-B15) 2005
Chylek (2023012712404841600_btx626-B4) 2015; 12
Laloy (2023012712404841600_btx626-B10) 2012; 48
Eydgahi (2023012712404841600_btx626-B6) 2013; 9
Vrugt (2023012712404841600_btx626-B22) 2008; 18
References_xml – volume: 95
  start-page: 121
  year: 2000
  ident: 2023012712404841600_btx626-B11
  article-title: The multiple-try method and local optimization in Metropolis sampling
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.2000.10473908
– volume: 11
  start-page: 341
  year: 1997
  ident: 2023012712404841600_btx626-B18
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim
  doi: 10.1023/A:1008202821328
– volume: 10
  start-page: 271
  year: 2009
  ident: 2023012712404841600_btx626-B23
  article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
  publication-title: Int. J. Nonlinear Sci
  doi: 10.1515/IJNSNS.2009.10.3.273
– volume: 8
  start-page: 2868
  year: 2012
  ident: 2023012712404841600_btx626-B17
  article-title: Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics
  publication-title: Mol. BioSyst
  doi: 10.1039/c2mb25190f
– volume: 112
  start-page: 12366
  year: 2015
  ident: 2023012712404841600_btx626-B13
  article-title: Competition and allostery govern substrate selectivity of cyclooxygenase-2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1507307112
– volume: 46
  start-page: W10531.
  year: 2010
  ident: 2023012712404841600_btx626-B16
  article-title: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors
  publication-title: Water Resour. Res
  doi: 10.1029/2009WR008933
– volume: 9
  start-page: 646.
  year: 2013
  ident: 2023012712404841600_btx626-B12
  article-title: Programming biological models in Python using PySB
  publication-title: Mol. Syst. Biol
  doi: 10.1038/msb.2013.1
– volume: 18
  start-page: 435
  year: 2008
  ident: 2023012712404841600_btx626-B22
  article-title: Differential evolution Markov chain with snooker updater and fewer chains
  publication-title: Stat. Comput
  doi: 10.1007/s11222-008-9104-9
– volume: 10
  start-page: 371.
  year: 2009
  ident: 2023012712404841600_btx626-B9
  article-title: An empirical Bayesian approach for model-based inference of cellular signaling networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-371
– volume: 32
  start-page: 5
  year: 2015
  ident: 2023012712404841600_btx626-B21
  article-title: BioNetFit: a fitting tool compatible with BioNetGen, NFsim, and distributed computing environments
  publication-title: BMC Bioinformatics
– volume: 9
  start-page: 644.
  year: 2013
  ident: 2023012712404841600_btx626-B6
  article-title: Properties of cell death models calibrated and compared using Bayesian approaches
  publication-title: Mol. Syst. Biol
  doi: 10.1038/msb.2012.69
– volume: 18
  start-page: 343
  year: 2008
  ident: 2023012712404841600_btx626-B1
  article-title: A tutorial on adaptive MCMC
  publication-title: Stat. Comput
  doi: 10.1007/s11222-008-9110-y
– volume: 126
  start-page: 1913
  year: 2013
  ident: 2023012712404841600_btx626-B7
  article-title: Models of signalling networks—what cell biologists can gain from them and give to them
  publication-title: J. Cell. Sci
  doi: 10.1242/jcs.112045
– year: 2001
  ident: 2023012712404841600_btx626-B8
– volume: 753
  start-page: 148
  year: 2012
  ident: 2023012712404841600_btx626-B2
  article-title: The spatial structure of mono-abundance sub-populations of the Milky Way disc
  publication-title: Astrophys. J
  doi: 10.1088/0004-637X/753/2/148
– volume-title: Differential Evolution: A Practical Approach to Global Optimization
  year: 2005
  ident: 2023012712404841600_btx626-B15
– volume: 48
  start-page: W01526.
  year: 2012
  ident: 2023012712404841600_btx626-B10
  article-title: High-dimensional posterior exploration of hydrologic models using multiple-try DREAMZS and high-performance computing
  publication-title: Water Resour. Res
  doi: 10.1029/2011WR010608
– volume: 6
  start-page: 352
  year: 2010
  ident: 2023012712404841600_btx626-B14
  article-title: Dynamics within the CD95 death-inducing signaling complex decide life and death of cells
  publication-title: Mol. Syst. Biol
  doi: 10.1038/msb.2010.6
– volume: 9
  start-page: e1003278.
  year: 2013
  ident: 2023012712404841600_btx626-B19
  article-title: Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1003278
– volume: 16
  start-page: 239
  year: 2006
  ident: 2023012712404841600_btx626-B20
  article-title: A Markov Chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces
  publication-title: Stat. Comput
  doi: 10.1007/s11222-006-8769-1
– volume: 75
  start-page: 273
  year: 2016
  ident: 2023012712404841600_btx626-B24
  article-title: Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation
  publication-title: Environ. Modell. Softw
  doi: 10.1016/j.envsoft.2015.08.013
– volume: 12
  start-page: 4.
  year: 2015
  ident: 2023012712404841600_btx626-B4
  article-title: Modeling for (physical) biologists: an introduction to the rule-based approach
  publication-title: Phys. Biol
  doi: 10.1088/1478-3975/12/4/045007
– volume: 68
  start-page: 021904
  year: 2003
  ident: 2023012712404841600_btx626-B3
  article-title: Statistical mechanical approaches to models with many poorly know parameters
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.021904
SSID ssj0051444
ssj0005056
Score 2.4994862
Snippet Abstract Summary Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration...
Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against...
SourceID unpaywall
pubmedcentral
osti
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 695
SubjectTerms Algorithms
Applications Notes
BASIC BIOLOGICAL SCIENCES
Calibration
Computational Biology - methods
Markov Chains
MATHEMATICS AND COMPUTING
Models, Biological
Monte Carlo Method
Software
Uncertainty
Title PyDREAM: high-dimensional parameter inference for biological models in python
URI https://www.ncbi.nlm.nih.gov/pubmed/29028896
https://www.proquest.com/docview/1951417626
https://www.osti.gov/servlets/purl/1565685
https://pubmed.ncbi.nlm.nih.gov/PMC5860607
https://academic.oup.com/bioinformatics/article-pdf/34/4/695/25117213/btx626.pdf
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tnRB74fujDKYg8cJDkvozDm8VbJqQOiq0SuUpiu1Eqyhpx1JB-es5x0m1lgeGxFuk8znJ-Wz_LN_9DuCNTXFbtlK7tA8Wcs1xHaSEh0UuhbGspLapPDc6l2cT_nEqpnsw7nJh8jYqPOpSGvRs0VKIOtriuLVnuLRlzHjMY5mK2MFkPMmwWNc_EaBHKNyHAykQnffgYHI-Hn7x6VdJyFVTLLl9JqRL6knZ7pt8X1vbVW-B024nE-4GIP0zrvLuqlrm6x_5fH5j0zq9D1fd7_pYla_RqtaR-bXDBPk_7fEA7rUINxh6lYewV1SP4I6vebl-DKPx-sPnk-HoXeCYkkPrqgt4ZpDA0ZB_c-E5waxLQwzwGwJPFOW8KWgK91yjPFiuHevBE5icnly8Pwvbmg6hQWhRh7hEqMTIUmkqS4sewRi1NE8pNSnPtSwTIYykyg5EUXBEN5ZSZQZW0ZToQhj2FHrVoiqeQ0BJzgzjiUkGmjMt01QTpbW7WzS4StE-8G7oMtMSnru6G_PMX7yzbNuWmbdWH6KN2tIzfvxN4cj5RYaQxfHuGhegZOqMOKisRB_e4tDdtqfXnVNlOMvd1U1eFYvVdUYQCHOSNG2eeSfbdEkdAY9KUZJsud-mgWMQ35ZUs8uGSVwoPL8Okj7EG0e93Ze--GeNIzhErKlcwDsRL6FXf18VrxDP1foY9i8-TY_bifobWyZR6A
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tXSG48H6UBRQkLhyS1M_Y3CrY1QqpqwpRaTlFsZ1oK0pa2FRQfj3jOKm25cAicYs0HicZj-3P8sw3AK-dxm3ZSePTPljMDcd1kBIel4UU1rGKurby3ORMns74h3NxfgDTPhem6KLCkz6lwcyXHYWopy1OO3vGK1eljKc8lVqkHibjSYalpvmJAD1B4Q04lALR-QAOZ2fT8eeQfpXFXLXFkrtnQvqkHs323xT62tmuBkucdnuZcFcA6Z9xlbfW9arY_CgWiyub1sld-Nb_bohV-ZKsG5PYX3tMkP_THvfgTodwo3FQuQ8HZf0Aboaal5uHMJlu3n88Hk_eRp4pOXa-ukBgBok8DflXH54Tzfs0xAi_IQpEUd6borZwzyXKo9XGsx48gtnJ8ad3p3FX0yG2CC2aGJcIlVlZKUNl5dAjGKOOFppSq3lhZJUJYSVVbiTKkiO6cZQqO3KKamJKYdljGNTLunwKESUFs4xnNhsZzozU2hBljL9btLhK0SHwfuhy2xGe-7obizxcvLN815Z5sNYQkq3aKjB-_E3hyPtFjpDF8-5aH6Bkm5x4qKzEEN7g0F23p1e9U-U4y_3VTVGXy_VlThAIc5K1bZ4EJ9t2ST0Bj9IoyXbcb9vAM4jvSur5RcskLhSeX0fZENKto17vS5_9s8YR3EasqXzAOxHPYdB8X5cvEM815mU3RX8DdM5QzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PyDREAM%3A+high-dimensional+parameter+inference+for+biological+models+in+python&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Shockley%2C+Erin+M&rft.au=Vrugt%2C+Jasper+A&rft.au=Lopez%2C+Carlos+F&rft.date=2018-02-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=34&rft.issue=4&rft.spage=695&rft.epage=697&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtx626&rft_id=info%3Apmid%2F29028896&rft.externalDocID=PMC5860607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon