PyDREAM: high-dimensional parameter inference for biological models in python
Abstract Summary Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distribut...
        Saved in:
      
    
          | Published in | Bioinformatics Vol. 34; no. 4; pp. 695 - 697 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Oxford University Press
    
        15.02.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1367-4803 1367-4811 1460-2059 1367-4811  | 
| DOI | 10.1093/bioinformatics/btx626 | 
Cover
| Abstract | Abstract
Summary
Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models.
Availability and implementation
PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM.
Supplementary information
Supplementary data are available at Bioinformatics online. | 
    
|---|---|
| AbstractList | Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models.
PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM.
c.lopez@vanderbilt.edu.
Supplementary data are available at Bioinformatics online. Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. Abstract Summary Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. Availability and implementation PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. Supplementary information Supplementary data are available at Bioinformatics online. Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models.SummaryBiological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models.PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM.Availability and implementationPyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM.c.lopez@vanderbilt.edu.Contactc.lopez@vanderbilt.edu.Supplementary data are available at Bioinformatics online.Supplementary informationSupplementary data are available at Bioinformatics online.  | 
    
| Author | Vrugt, Jasper A Shockley, Erin M Lopez, Carlos F  | 
    
| AuthorAffiliation | 2 Department of Civil and Environmental Engineering, University of California Irvine, 4130 Engineering Gateway, Irvine, CA, USA 3 Department of Earth System Science, University of California Irvine, 3200 Croul Hall St, Irvine, CA, USA 1 Department of Biochemistry, Vanderbilt University, 2215 Garland Avenue, Nashville, TN, USA  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Biochemistry, Vanderbilt University, 2215 Garland Avenue, Nashville, TN, USA – name: 2 Department of Civil and Environmental Engineering, University of California Irvine, 4130 Engineering Gateway, Irvine, CA, USA – name: 3 Department of Earth System Science, University of California Irvine, 3200 Croul Hall St, Irvine, CA, USA  | 
    
| Author_xml | – sequence: 1 givenname: Erin M orcidid: 0000-0001-8114-8098 surname: Shockley fullname: Shockley, Erin M organization: Department of Biochemistry, Vanderbilt University, 2215 Garland Avenue, Nashville, TN, USA – sequence: 2 givenname: Jasper A surname: Vrugt fullname: Vrugt, Jasper A organization: Department of Civil and Environmental Engineering, University of California Irvine, 4130 Engineering Gateway, Irvine, CA, USA – sequence: 3 givenname: Carlos F orcidid: 0000-0003-3668-7468 surname: Lopez fullname: Lopez, Carlos F email: c.lopez@vanderbilt.edu organization: Department of Biochemistry, Vanderbilt University, 2215 Garland Avenue, Nashville, TN, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29028896$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1565685$$D View this record in Osti.gov  | 
    
| BookMark | eNqNUV1r1jAUDrLhPvQnKMUrb-qStElTBWHM6YQNRfQ6pOnp20iadEmqvv_ejL6bzht3lcB5nvN8nCO057wDhJ4R_IrgtjrpjDdu8GFSyeh40qVfnPJH6JDUHJcUs3Yv_yvelLXA1QE6ivE7xozUdf0YHdAWUyFafoiuPm_ffTk_vXpdjGYzlr2ZwEXjnbLFrIKaIEEoshAEcBqKLFhkZes3RmfI5HuwMc-LeZtG756g_UHZCE937zH69v7869lFefnpw8ez08tSM0JTWVMmGs0H0VE-9KB4VdGeqpZS3daq40PDmOZU9JgB1HVFekqFxr2gLemA6eoY8XXv4ma1_amslXMwkwpbSbC86Ufe70eu_WTi25U4L90EvQaXgvpD9srI-xNnRrnxPyQTHHPc5AUv1gU-JiOjNgn0qL1zoJMkjDMuWAa93KkEf71ATHIyUYO1yoFfoiRtPgRpVkPP_zZ05-T2QhnAVoAOPsYAw4OTvvmHl71mhL_JZex_2XgXc5kfKPgbLADUdg | 
    
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2023_129931 crossref_primary_10_1007_s00024_018_1870_5 crossref_primary_10_3389_fgene_2023_1254966 crossref_primary_10_1016_j_jhydrol_2023_129670 crossref_primary_10_1016_j_bpj_2023_01_035 crossref_primary_10_1016_j_isci_2024_109989 crossref_primary_10_1103_PhysRevB_110_174417 crossref_primary_10_1016_j_hydroa_2021_100093 crossref_primary_10_1093_bioinformatics_btac630 crossref_primary_10_3847_1538_4357_acd846 crossref_primary_10_1242_dev_200295 crossref_primary_10_1016_j_cels_2020_06_012 crossref_primary_10_1016_j_coisb_2019_09_005 crossref_primary_10_1038_s41598_021_92140_z crossref_primary_10_3389_fgene_2020_00686 crossref_primary_10_15252_msb_20199361 crossref_primary_10_1016_j_jsv_2021_116601 crossref_primary_10_1371_journal_pcbi_1011004 crossref_primary_10_1371_journal_pcbi_1009035 crossref_primary_10_1371_journal_pcbi_1010651 crossref_primary_10_1098_rsfs_2018_0039 crossref_primary_10_5194_tc_16_5061_2022 crossref_primary_10_1126_science_aba7667 crossref_primary_10_1016_j_jsv_2021_116741 crossref_primary_10_1038_s41467_023_41518_w crossref_primary_10_1029_2024WR038360 crossref_primary_10_1073_pnas_1819230116 crossref_primary_10_1016_j_jcp_2023_112250 crossref_primary_10_1093_bioinformatics_btz542 crossref_primary_10_1016_j_jhydrol_2024_132016 crossref_primary_10_1016_j_isci_2019_08_045 crossref_primary_10_1093_bioinformatics_btac004 crossref_primary_10_1371_journal_pcbi_1008208 crossref_primary_10_1016_j_coisb_2021_05_004 crossref_primary_10_1016_j_envsoft_2022_105453 crossref_primary_10_1029_2020WR028908 crossref_primary_10_1091_mbc_E20_08_0530 crossref_primary_10_5194_esurf_10_687_2022 crossref_primary_10_1029_2024WR038779 crossref_primary_10_1093_bioinformatics_btab061 crossref_primary_10_2139_ssrn_3382545 crossref_primary_10_3389_fimmu_2021_748423 crossref_primary_10_1242_dev_202503 crossref_primary_10_3390_electronics8060630  | 
    
| Cites_doi | 10.1080/01621459.2000.10473908 10.1023/A:1008202821328 10.1515/IJNSNS.2009.10.3.273 10.1039/c2mb25190f 10.1073/pnas.1507307112 10.1029/2009WR008933 10.1038/msb.2013.1 10.1007/s11222-008-9104-9 10.1186/1471-2105-10-371 10.1038/msb.2012.69 10.1007/s11222-008-9110-y 10.1242/jcs.112045 10.1088/0004-637X/753/2/148 10.1029/2011WR010608 10.1038/msb.2010.6 10.1371/journal.pcbi.1003278 10.1007/s11222-006-8769-1 10.1016/j.envsoft.2015.08.013 10.1088/1478-3975/12/4/045007 10.1103/PhysRevE.68.021904  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author 2017. Published by Oxford University Press. 2017 The Author(s) 2017. Published by Oxford University Press.  | 
    
| Copyright_xml | – notice: The Author 2017. Published by Oxford University Press. 2017 – notice: The Author(s) 2017. Published by Oxford University Press.  | 
    
| CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) | 
    
| CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) | 
    
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/bioinformatics/btx626 | 
    
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1460-2059 1367-4811  | 
    
| EndPage | 697 | 
    
| ExternalDocumentID | 10.1093/bioinformatics/btx626 PMC5860607 1565685 29028896 10_1093_bioinformatics_btx626  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: National Science Foundation grantid: MCB-1411482 funderid: 10.13039/100000001 – fundername: NIH grantid: 5T32GM065086 funderid: 10.13039/100000002 – fundername: NIGMS NIH HHS grantid: T32 GM065086 – fundername: ; ; grantid: MCB-1411482 – fundername: ; ; grantid: 5T32GM065086  | 
    
| GroupedDBID | -~X .2P 5GY AAMVS ABJNI ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS F5P HW0 Q5Y RD5 ROZ TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF M49 NPM ROX 7X8 1TH NVLIB OIOZB OTOTI 5PM .-4 .GJ ABEFU ABNGD ACUKT ADTOC AFFNX AGQPQ AI. AQDSO ATTQO AZFZN C1A CAG COF ELUNK HVGLF NTWIH O0~ O~Y PB- RNI RZF RZO UNPAY VH1 ZGI  | 
    
| ID | FETCH-LOGICAL-c512t-42587c6f8b26fdea6332d2a922c94ab6f755c628d05ee4431d228c0d8291be5c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1367-4803 1367-4811  | 
    
| IngestDate | Sun Oct 26 04:04:17 EDT 2025 Thu Aug 21 14:11:18 EDT 2025 Mon Jun 23 02:30:24 EDT 2025 Wed Oct 01 14:23:16 EDT 2025 Wed Feb 19 02:36:11 EST 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Jul 01 03:27:23 EDT 2025 Wed Apr 02 07:03:24 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2017. Published by Oxford University Press. cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c512t-42587c6f8b26fdea6332d2a922c94ab6f755c628d05ee4431d228c0d8291be5c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science National Science Foundation (NSF) AC05-00OR22725 None National Institutes of Health (NIH)  | 
    
| ORCID | 0000-0001-8114-8098 0000-0003-3668-7468 0000000181148098 0000000336687468  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/34/4/695/25117213/btx626.pdf | 
    
| PMID | 29028896 | 
    
| PQID | 1951417626 | 
    
| PQPubID | 23479 | 
    
| PageCount | 3 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btx626 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5860607 osti_scitechconnect_1565685 proquest_miscellaneous_1951417626 pubmed_primary_29028896 crossref_primary_10_1093_bioinformatics_btx626 crossref_citationtrail_10_1093_bioinformatics_btx626 oup_primary_10_1093_bioinformatics_btx626  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-02-15 | 
    
| PublicationDateYYYYMMDD | 2018-02-15 | 
    
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: United States  | 
    
| PublicationTitle | Bioinformatics | 
    
| PublicationTitleAlternate | Bioinformatics | 
    
| PublicationYear | 2018 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Neumann (2023012712404841600_btx626-B14) 2010; 6 Bovy (2023012712404841600_btx626-B2) 2012; 753 Vrugt (2023012712404841600_btx626-B23) 2009; 10 Shankaran (2023012712404841600_btx626-B17) 2012; 8 Suderman (2023012712404841600_btx626-B19) 2013; 9 Andrieu (2023012712404841600_btx626-B1) 2008; 18 Storn (2023012712404841600_btx626-B18) 1997; 11 Klinke (2023012712404841600_btx626-B9) 2009; 10 Lopez (2023012712404841600_btx626-B12) 2013; 9 Thomas (2023012712404841600_btx626-B21) 2015; 32 Schoups (2023012712404841600_btx626-B16) 2010; 46 ter Braak (2023012712404841600_btx626-B20) 2006; 16 Vrugt (2023012712404841600_btx626-B24) 2016; 75 Brown (2023012712404841600_btx626-B3) 2003; 68 Jones (2023012712404841600_btx626-B8) 2001 Liu (2023012712404841600_btx626-B11) 2000; 95 Janes (2023012712404841600_btx626-B7) 2013; 126 Mitchener (2023012712404841600_btx626-B13) 2015; 112 Price (2023012712404841600_btx626-B15) 2005 Chylek (2023012712404841600_btx626-B4) 2015; 12 Laloy (2023012712404841600_btx626-B10) 2012; 48 Eydgahi (2023012712404841600_btx626-B6) 2013; 9 Vrugt (2023012712404841600_btx626-B22) 2008; 18  | 
    
| References_xml | – volume: 95 start-page: 121 year: 2000 ident: 2023012712404841600_btx626-B11 article-title: The multiple-try method and local optimization in Metropolis sampling publication-title: J. Am. Stat. Assoc doi: 10.1080/01621459.2000.10473908 – volume: 11 start-page: 341 year: 1997 ident: 2023012712404841600_btx626-B18 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim doi: 10.1023/A:1008202821328 – volume: 10 start-page: 271 year: 2009 ident: 2023012712404841600_btx626-B23 article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling publication-title: Int. J. Nonlinear Sci doi: 10.1515/IJNSNS.2009.10.3.273 – volume: 8 start-page: 2868 year: 2012 ident: 2023012712404841600_btx626-B17 article-title: Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics publication-title: Mol. BioSyst doi: 10.1039/c2mb25190f – volume: 112 start-page: 12366 year: 2015 ident: 2023012712404841600_btx626-B13 article-title: Competition and allostery govern substrate selectivity of cyclooxygenase-2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1507307112 – volume: 46 start-page: W10531. year: 2010 ident: 2023012712404841600_btx626-B16 article-title: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors publication-title: Water Resour. Res doi: 10.1029/2009WR008933 – volume: 9 start-page: 646. year: 2013 ident: 2023012712404841600_btx626-B12 article-title: Programming biological models in Python using PySB publication-title: Mol. Syst. Biol doi: 10.1038/msb.2013.1 – volume: 18 start-page: 435 year: 2008 ident: 2023012712404841600_btx626-B22 article-title: Differential evolution Markov chain with snooker updater and fewer chains publication-title: Stat. Comput doi: 10.1007/s11222-008-9104-9 – volume: 10 start-page: 371. year: 2009 ident: 2023012712404841600_btx626-B9 article-title: An empirical Bayesian approach for model-based inference of cellular signaling networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-371 – volume: 32 start-page: 5 year: 2015 ident: 2023012712404841600_btx626-B21 article-title: BioNetFit: a fitting tool compatible with BioNetGen, NFsim, and distributed computing environments publication-title: BMC Bioinformatics – volume: 9 start-page: 644. year: 2013 ident: 2023012712404841600_btx626-B6 article-title: Properties of cell death models calibrated and compared using Bayesian approaches publication-title: Mol. Syst. Biol doi: 10.1038/msb.2012.69 – volume: 18 start-page: 343 year: 2008 ident: 2023012712404841600_btx626-B1 article-title: A tutorial on adaptive MCMC publication-title: Stat. Comput doi: 10.1007/s11222-008-9110-y – volume: 126 start-page: 1913 year: 2013 ident: 2023012712404841600_btx626-B7 article-title: Models of signalling networks—what cell biologists can gain from them and give to them publication-title: J. Cell. Sci doi: 10.1242/jcs.112045 – year: 2001 ident: 2023012712404841600_btx626-B8 – volume: 753 start-page: 148 year: 2012 ident: 2023012712404841600_btx626-B2 article-title: The spatial structure of mono-abundance sub-populations of the Milky Way disc publication-title: Astrophys. J doi: 10.1088/0004-637X/753/2/148 – volume-title: Differential Evolution: A Practical Approach to Global Optimization year: 2005 ident: 2023012712404841600_btx626-B15 – volume: 48 start-page: W01526. year: 2012 ident: 2023012712404841600_btx626-B10 article-title: High-dimensional posterior exploration of hydrologic models using multiple-try DREAMZS and high-performance computing publication-title: Water Resour. Res doi: 10.1029/2011WR010608 – volume: 6 start-page: 352 year: 2010 ident: 2023012712404841600_btx626-B14 article-title: Dynamics within the CD95 death-inducing signaling complex decide life and death of cells publication-title: Mol. Syst. Biol doi: 10.1038/msb.2010.6 – volume: 9 start-page: e1003278. year: 2013 ident: 2023012712404841600_btx626-B19 article-title: Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1003278 – volume: 16 start-page: 239 year: 2006 ident: 2023012712404841600_btx626-B20 article-title: A Markov Chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces publication-title: Stat. Comput doi: 10.1007/s11222-006-8769-1 – volume: 75 start-page: 273 year: 2016 ident: 2023012712404841600_btx626-B24 article-title: Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation publication-title: Environ. Modell. Softw doi: 10.1016/j.envsoft.2015.08.013 – volume: 12 start-page: 4. year: 2015 ident: 2023012712404841600_btx626-B4 article-title: Modeling for (physical) biologists: an introduction to the rule-based approach publication-title: Phys. Biol doi: 10.1088/1478-3975/12/4/045007 – volume: 68 start-page: 021904 year: 2003 ident: 2023012712404841600_btx626-B3 article-title: Statistical mechanical approaches to models with many poorly know parameters publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.021904  | 
    
| SSID | ssj0051444 ssj0005056  | 
    
| Score | 2.4994862 | 
    
| Snippet | Abstract
Summary
Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration... Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against...  | 
    
| SourceID | unpaywall pubmedcentral osti proquest pubmed crossref oup  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 695 | 
    
| SubjectTerms | Algorithms Applications Notes BASIC BIOLOGICAL SCIENCES Calibration Computational Biology - methods Markov Chains MATHEMATICS AND COMPUTING Models, Biological Monte Carlo Method Software Uncertainty  | 
    
| Title | PyDREAM: high-dimensional parameter inference for biological models in python | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29028896 https://www.proquest.com/docview/1951417626 https://www.osti.gov/servlets/purl/1565685 https://pubmed.ncbi.nlm.nih.gov/PMC5860607 https://academic.oup.com/bioinformatics/article-pdf/34/4/695/25117213/btx626.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 34 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1460-2059 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1460-2059 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tnRB74fujDKYg8cJDkvozDm8VbJqQOiq0SuUpiu1Eqyhpx1JB-es5x0m1lgeGxFuk8znJ-Wz_LN_9DuCNTXFbtlK7tA8Wcs1xHaSEh0UuhbGspLapPDc6l2cT_nEqpnsw7nJh8jYqPOpSGvRs0VKIOtriuLVnuLRlzHjMY5mK2MFkPMmwWNc_EaBHKNyHAykQnffgYHI-Hn7x6VdJyFVTLLl9JqRL6knZ7pt8X1vbVW-B024nE-4GIP0zrvLuqlrm6x_5fH5j0zq9D1fd7_pYla_RqtaR-bXDBPk_7fEA7rUINxh6lYewV1SP4I6vebl-DKPx-sPnk-HoXeCYkkPrqgt4ZpDA0ZB_c-E5waxLQwzwGwJPFOW8KWgK91yjPFiuHevBE5icnly8Pwvbmg6hQWhRh7hEqMTIUmkqS4sewRi1NE8pNSnPtSwTIYykyg5EUXBEN5ZSZQZW0ZToQhj2FHrVoiqeQ0BJzgzjiUkGmjMt01QTpbW7WzS4StE-8G7oMtMSnru6G_PMX7yzbNuWmbdWH6KN2tIzfvxN4cj5RYaQxfHuGhegZOqMOKisRB_e4tDdtqfXnVNlOMvd1U1eFYvVdUYQCHOSNG2eeSfbdEkdAY9KUZJsud-mgWMQ35ZUs8uGSVwoPL8Okj7EG0e93Ze--GeNIzhErKlcwDsRL6FXf18VrxDP1foY9i8-TY_bifobWyZR6A | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tXSG48H6UBRQkLhyS1M_Y3CrY1QqpqwpRaTlFsZ1oK0pa2FRQfj3jOKm25cAicYs0HicZj-3P8sw3AK-dxm3ZSePTPljMDcd1kBIel4UU1rGKurby3ORMns74h3NxfgDTPhem6KLCkz6lwcyXHYWopy1OO3vGK1eljKc8lVqkHibjSYalpvmJAD1B4Q04lALR-QAOZ2fT8eeQfpXFXLXFkrtnQvqkHs323xT62tmuBkucdnuZcFcA6Z9xlbfW9arY_CgWiyub1sld-Nb_bohV-ZKsG5PYX3tMkP_THvfgTodwo3FQuQ8HZf0Aboaal5uHMJlu3n88Hk_eRp4pOXa-ukBgBok8DflXH54Tzfs0xAi_IQpEUd6borZwzyXKo9XGsx48gtnJ8ad3p3FX0yG2CC2aGJcIlVlZKUNl5dAjGKOOFppSq3lhZJUJYSVVbiTKkiO6cZQqO3KKamJKYdljGNTLunwKESUFs4xnNhsZzozU2hBljL9btLhK0SHwfuhy2xGe-7obizxcvLN815Z5sNYQkq3aKjB-_E3hyPtFjpDF8-5aH6Bkm5x4qKzEEN7g0F23p1e9U-U4y_3VTVGXy_VlThAIc5K1bZ4EJ9t2ST0Bj9IoyXbcb9vAM4jvSur5RcskLhSeX0fZENKto17vS5_9s8YR3EasqXzAOxHPYdB8X5cvEM815mU3RX8DdM5QzA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PyDREAM%3A+high-dimensional+parameter+inference+for+biological+models+in+python&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Shockley%2C+Erin+M&rft.au=Vrugt%2C+Jasper+A&rft.au=Lopez%2C+Carlos+F&rft.date=2018-02-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=34&rft.issue=4&rft.spage=695&rft.epage=697&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtx626&rft_id=info%3Apmid%2F29028896&rft.externalDocID=PMC5860607 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |