PyDREAM: high-dimensional parameter inference for biological models in python

Abstract Summary Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distribut...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 34; no. 4; pp. 695 - 697
Main Authors Shockley, Erin M, Vrugt, Jasper A, Lopez, Carlos F
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.02.2018
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btx626

Cover

More Information
Summary:Abstract Summary Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. Availability and implementation PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. Supplementary information Supplementary data are available at Bioinformatics online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science
National Science Foundation (NSF)
AC05-00OR22725
None
National Institutes of Health (NIH)
ISSN:1367-4803
1367-4811
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btx626