Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials
We measured the effective complex magnetic permeability /spl mu//sub eff//sup */ and dielectric permittivity /spl epsiv//sub eff//sup */ spectra in rubber radar absorbing material (RAM) with various carbonyl iron volume fractions by using the transmission/reflection method with a vector network anal...
Saved in:
Published in | IEEE transactions on magnetics Vol. 42; no. 3; pp. 363 - 368 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.03.2006
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9464 1941-0069 |
DOI | 10.1109/TMAG.2005.862763 |
Cover
Abstract | We measured the effective complex magnetic permeability /spl mu//sub eff//sup */ and dielectric permittivity /spl epsiv//sub eff//sup */ spectra in rubber radar absorbing material (RAM) with various carbonyl iron volume fractions by using the transmission/reflection method with a vector network analyzer. We studied the effects of carbonyl iron content and rubber thickness on the microwave absorption properties in the frequency range of 2.6 to 18 GHz. Our mathematical analysis is based on electromagnetic theory. The results indicate that the effective complex magnetic permeability and dielectric permittivity values of the RAM increase as the carbonyl iron volume fraction increases. For sample thickness of 3.0 mm, an increase in carbonyl iron content reduces the minimum reflection loss from -1.3 to -23.9 dB and shifts the frequency of the minimum reflection loss from 15.5 to 3.5 GHz. For an equal volume fraction of carbonyl iron, the frequency of the minimum reflection loss decreases as the thickness is increased. However, the dip in the reflection loss plot (in decibels) initially decreases to a minimum value before it increases with a further increase in thickness. We determined the value of the reflection loss for the samples by the impedance matching degree (reflection coefficient), which depends on the thickness and composition of the RAM. |
---|---|
AbstractList | We measured the effective complex magnetic permeabilitymu_ effastand dielectric permittivityvarepsilon_ effastspectra in rubber radar absorbing material (RAM) with various carbonyl iron volume fractions by using the transmission/reflection method with a vector network analyzer. We studied the effects of carbonyl iron content and rubber thickness on the microwave absorption properties in the frequency range of 2.6 to 18 GHz. Our mathematical analysis is based on electromagnetic theory. The results indicate that the effective complex magnetic permeability and dielectric permittivity values of the RAM increase as the carbonyl iron volume fraction increases. For sample thickness of 3.0 mm, an increase in carbonyl iron content reduces the minimum reflection loss from-1.3to-23.9dB and shifts the frequency of the minimum reflection loss from 15.5 to 3.5 GHz. For an equal volume fraction of carbonyl iron, the frequency of the minimum reflection loss decreases as the thickness is increased. However, the dip in the reflection loss plot (in decibels) initially decreases to a minimum value before it increases with a further increase in thickness. We determined the value of the reflection loss for the samples by the impedance matching degree (reflection coefficient), which depends on the thickness and composition of the RAM. We measured the effective complex magnetic permeability /spl mu//sub eff//sup */ and dielectric permittivity /spl epsiv//sub eff//sup */ spectra in rubber radar absorbing material (RAM) with various carbonyl iron volume fractions by using the transmission/reflection method with a vector network analyzer. We studied the effects of carbonyl iron content and rubber thickness on the microwave absorption properties in the frequency range of 2.6 to 18 GHz. Our mathematical analysis is based on electromagnetic theory. The results indicate that the effective complex magnetic permeability and dielectric permittivity values of the RAM increase as the carbonyl iron volume fraction increases. For sample thickness of 3.0 mm, an increase in carbonyl iron content reduces the minimum reflection loss from -1.3 to -23.9 dB and shifts the frequency of the minimum reflection loss from 15.5 to 3.5 GHz. For an equal volume fraction of carbonyl iron, the frequency of the minimum reflection loss decreases as the thickness is increased. However, the dip in the reflection loss plot (in decibels) initially decreases to a minimum value before it increases with a further increase in thickness. We determined the value of the reflection loss for the samples by the impedance matching degree (reflection coefficient), which depends on the thickness and composition of the RAM. We measured the effective complex magnetic permeability mu sub(eff) super(*) and dielectric permittivity member of sub(eff) super(*) spectra in rubber radar absorbing material (RAM) with various carbonyl iron volume fractions by using the transmission/reflection method with a vector network analyzer. We studied the effects of carbonyl iron content and rubber thickness on the microwave absorption properties in the frequency range of 2.6 to 18 GHz. Our mathematical analysis is based on electromagnetic theory. The results indicate that the effective complex magnetic permeability and dielectric permittivity values of the RAM increase as the carbonyl iron volume fraction increases. For sample thickness of 3.0 mm, an increase in carbonyl iron content reduces the minimum reflection loss from -1.3 to -23.9 dB and shifts the frequency of the minimum reflection loss from 15.5 to 3.5 GHz. For an equal volume fraction of carbonyl iron, the frequency of the minimum reflection loss decreases as the thickness is increased. However, the dip in the reflection loss plot (in decibels) initially decreases to a minimum value before it increases with a further increase in thickness. We determined the value of the reflection loss for the samples by the impedance matching degree (reflection coefficient), which depends on the thickness and composition of the RAM. The results indicate that the effective complex magnetic permeability and dielectric permittivity values of the RAM increase as the carbonyl iron volume fraction increases. |
Author | Tai Qiu Xiao-Yun Li Yong-Bao Feng Chun-Ying Shen |
Author_xml | – sequence: 1 givenname: Yong-Bao Feng surname: Yong-Bao Feng fullname: Yong-Bao Feng, Yong-Bao Feng – sequence: 2 givenname: Tai Qiu surname: Tai Qiu fullname: Tai Qiu, Tai Qiu – sequence: 3 givenname: Chun-Ying Shen surname: Chun-Ying Shen fullname: Chun-Ying Shen, Chun-Ying Shen – sequence: 4 givenname: Xiao-Yun Li surname: Xiao-Yun Li fullname: Xiao-Yun Li, Xiao-Yun Li |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17581769$$DView record in Pascal Francis |
BookMark | eNqNkkFr3DAQhUVJoZu090IvptD25I1GsmTpGEKSFlJySU49iLEsBwWvtJW0h_z7yjikEGjJQQyC7808Zt4xOQoxOEI-At0CUH16-_PsassoFVslWS_5G7IB3UFLqdRHZEMpqFZ3sntHjnN-qN9OAN2QXxezsyXFHd4HV7xtMIwNDjmmffExNPsU9y4V73ITp8ZiGmJ4nBufYjhNh2FwqUk4Ylo1gw_3zQ6LSx7n_J68nWpxH57qCbm7vLg9_95e31z9OD-7bq0AKO2AVk5U0m5UqChFdJOwnPVCcSmqbdb1ljGmR6WmUUoBVrKh7-kIruoU4yfk29q3mv19cLmYnc_WzTMGFw_ZKKV5fVpW8ut_SaY0UKn4K0DgSoJ-BUhBMr2Y_PwCfIiHFOpejJKiE5r3y9gvTxBmi_OUMFifzT75HaZHA3Un0Mtlqlw5m2LOyU3G-oLLwUpCPxugZgmFWUJhllCYNRRVSF8In3v_W_JplXjn3F9c6L5jkv8BpsHC3g |
CODEN | IEMGAQ |
CitedBy_id | crossref_primary_10_1016_j_optmat_2022_112689 crossref_primary_10_1002_macp_201600435 crossref_primary_10_1039_C1DT11012H crossref_primary_10_7567_JJAP_51_015801 crossref_primary_10_1088_1361_6463_ac07dc crossref_primary_10_1016_j_compscitech_2023_110159 crossref_primary_10_1016_j_matchemphys_2011_07_005 crossref_primary_10_1016_j_matdes_2016_09_106 crossref_primary_10_1007_s11664_019_06986_1 crossref_primary_10_1016_j_compositesa_2022_107295 crossref_primary_10_1590_S1516_14392013005000077 crossref_primary_10_1002_masy_202000002 crossref_primary_10_1039_C5TA02109J crossref_primary_10_1016_j_jallcom_2017_01_202 crossref_primary_10_1039_C9NA00108E crossref_primary_10_1016_j_jmmm_2012_04_052 crossref_primary_10_1051_e3sconf_202447401008 crossref_primary_10_1007_s11664_016_4671_6 crossref_primary_10_1016_j_jallcom_2011_11_060 crossref_primary_10_1109_JSEN_2021_3102065 crossref_primary_10_1149_2162_8777_acf8f2 crossref_primary_10_1007_s10854_017_8423_z crossref_primary_10_1016_j_ceramint_2019_11_045 crossref_primary_10_1016_j_jmmm_2019_03_085 crossref_primary_10_1142_S1793292024500061 crossref_primary_10_1002_sia_5351 crossref_primary_10_1109_TAP_2019_2951494 crossref_primary_10_1002_app_45846 crossref_primary_10_1016_j_ceramint_2021_04_141 crossref_primary_10_1109_TMAG_2011_2158109 crossref_primary_10_1007_s00339_020_3413_z crossref_primary_10_1016_j_matchemphys_2011_03_062 crossref_primary_10_1016_j_jallcom_2023_171798 crossref_primary_10_1007_s10717_022_00479_0 crossref_primary_10_1021_acsanm_0c00243 crossref_primary_10_1155_2012_591839 crossref_primary_10_1007_s12034_017_1368_2 crossref_primary_10_1016_j_jmmm_2014_10_059 crossref_primary_10_1016_j_jmmm_2018_04_061 crossref_primary_10_1016_j_compscitech_2012_03_001 crossref_primary_10_1016_j_physb_2010_11_079 crossref_primary_10_1016_j_pnucene_2024_105478 crossref_primary_10_1016_j_compositesa_2015_05_009 crossref_primary_10_1088_1361_6463_aa8f67 crossref_primary_10_1016_j_jallcom_2010_11_074 crossref_primary_10_1002_pssa_201329258 crossref_primary_10_1016_j_matchemphys_2008_08_091 crossref_primary_10_1109_TAP_2016_2535164 crossref_primary_10_1590_s1517_707620210002_1263 crossref_primary_10_1016_j_compositesa_2007_08_002 crossref_primary_10_1109_TSP_2024_3420149 crossref_primary_10_1063_5_0239978 crossref_primary_10_1007_s12034_010_0096_7 crossref_primary_10_1063_1_3068039 crossref_primary_10_1016_j_jmmm_2015_12_070 crossref_primary_10_1109_TAP_2019_2938848 crossref_primary_10_1021_cr400624r crossref_primary_10_1016_j_jmmm_2014_08_059 crossref_primary_10_1016_j_mseb_2009_03_023 crossref_primary_10_1063_1_3556762 crossref_primary_10_1016_j_compscitech_2024_110981 crossref_primary_10_1016_j_matchemphys_2017_04_005 crossref_primary_10_1143_JJAP_51_015801 crossref_primary_10_1016_j_jallcom_2011_05_091 crossref_primary_10_1016_j_jmmm_2010_07_037 crossref_primary_10_1016_j_jallcom_2012_09_096 crossref_primary_10_1016_j_jmmm_2017_09_073 crossref_primary_10_1016_j_jmmm_2011_05_052 crossref_primary_10_1016_j_ceja_2023_100568 crossref_primary_10_1039_C4RA13704C crossref_primary_10_1016_j_jallcom_2023_172867 crossref_primary_10_1039_c2jm15096d crossref_primary_10_1177_0095244315620917 crossref_primary_10_1016_j_jmmm_2008_08_099 crossref_primary_10_1016_j_physb_2009_06_001 crossref_primary_10_1039_C4TA05908E crossref_primary_10_1007_s00339_009_5284_1 crossref_primary_10_5028_jatm_2010_02015962 crossref_primary_10_1063_1_3487477 crossref_primary_10_1103_PhysRevApplied_13_034073 crossref_primary_10_1080_2374068X_2020_1856635 crossref_primary_10_1063_1_2357565 crossref_primary_10_1088_1742_6596_266_1_012025 crossref_primary_10_1080_10584587_2018_1456159 crossref_primary_10_1088_1402_4896_ad3486 crossref_primary_10_4028_www_scientific_net_AMR_160_162_962 crossref_primary_10_4028_www_scientific_net_AMR_846_847_1905 crossref_primary_10_1038_s41598_018_28574_9 crossref_primary_10_1111_ijac_15055 crossref_primary_10_1155_2013_391083 crossref_primary_10_1007_s10854_017_8172_z crossref_primary_10_1109_LAWP_2014_2349533 crossref_primary_10_1016_j_jmmm_2011_02_013 crossref_primary_10_1016_j_carbon_2015_01_002 crossref_primary_10_1109_TEMC_2012_2187663 crossref_primary_10_1109_TIM_2009_2031851 crossref_primary_10_1016_j_ceramint_2013_10_038 crossref_primary_10_1016_j_powtec_2024_120132 crossref_primary_10_1007_s00339_020_03950_3 crossref_primary_10_1016_j_jmmm_2015_05_074 crossref_primary_10_1016_j_materresbull_2021_111415 crossref_primary_10_1016_j_orgel_2018_04_037 crossref_primary_10_1557_jmr_2011_317 crossref_primary_10_1109_TMAG_2015_2431996 crossref_primary_10_1007_s10661_013_3085_7 crossref_primary_10_1007_s10854_022_08566_2 crossref_primary_10_1002_mop_28481 crossref_primary_10_1557_jmr_2014_227 crossref_primary_10_1002_advs_202303104 crossref_primary_10_1016_j_compscitech_2020_108410 crossref_primary_10_1016_j_jmmm_2010_10_021 crossref_primary_10_1002_adma_201303088 crossref_primary_10_1016_j_physb_2008_12_015 crossref_primary_10_1016_j_jmmm_2016_06_003 crossref_primary_10_4028_www_scientific_net_AMR_542_543_765 crossref_primary_10_1063_1_3072692 crossref_primary_10_1007_s10854_012_0859_6 crossref_primary_10_1109_LAWP_2016_2572734 crossref_primary_10_1109_TMAG_2006_880686 crossref_primary_10_1063_1_3088882 crossref_primary_10_4028_www_scientific_net_AMR_834_836_187 crossref_primary_10_1109_TMTT_2020_2995882 crossref_primary_10_1007_s10853_009_3257_6 crossref_primary_10_1016_j_materresbull_2020_110818 crossref_primary_10_1007_s11998_019_00309_z crossref_primary_10_1016_j_apsusc_2012_02_047 crossref_primary_10_1177_0731684417690816 crossref_primary_10_1007_s11468_019_01013_9 crossref_primary_10_1007_s10854_018_0192_9 crossref_primary_10_1109_ACCESS_2022_3168826 crossref_primary_10_1007_s12034_020_02311_3 crossref_primary_10_1007_s10854_018_9535_9 crossref_primary_10_1038_s41598_024_66802_7 crossref_primary_10_2109_jcersj2_122_49 crossref_primary_10_1016_j_jmmm_2014_06_036 crossref_primary_10_1063_1_3040006 crossref_primary_10_1007_s10854_016_5422_4 crossref_primary_10_1016_j_matchemphys_2024_129307 crossref_primary_10_3938_jkps_76_967 crossref_primary_10_1038_ncomms7628 crossref_primary_10_1016_j_compositesa_2021_106626 crossref_primary_10_1016_j_jmmm_2007_10_030 crossref_primary_10_1587_elex_21_20240394 crossref_primary_10_1016_j_compstruct_2023_117261 crossref_primary_10_1002_pssb_202300149 crossref_primary_10_1016_j_jmmm_2018_01_014 crossref_primary_10_1109_LMAG_2012_2205374 crossref_primary_10_1016_j_jmmm_2015_10_056 crossref_primary_10_1088_1674_1056_23_7_078101 |
Cites_doi | 10.1109/TIM.2005.853346 10.1109/20.278872 10.1088/0022-3727/23/3/014 10.1016/S0141-3910(00)00198-1 10.1049/ip-f-2.1991.0029 10.1109/20.281188 10.1063/1.1852371 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SP 7U5 8BQ 8FD JG9 L7M 7SR H8D F28 FR3 |
DOI | 10.1109/TMAG.2005.862763 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Pascal-Francis Electronics & Communications Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Engineered Materials Abstracts Aerospace Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts Engineered Materials Abstracts Aerospace Database Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Materials Research Database Materials Research Database Materials Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1941-0069 |
EndPage | 368 |
ExternalDocumentID | 2341482291 17581769 10_1109_TMAG_2005_862763 1597426 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK XXG AAYXX CITATION RIG IQODW 7SP 7U5 8BQ 8FD JG9 L7M 7SR H8D F28 FR3 |
ID | FETCH-LOGICAL-c511t-bac6f0604d8a800aaef5c32758365018247c2229d88fd6651c62b770d1e6f0823 |
IEDL.DBID | RIE |
ISSN | 0018-9464 |
IngestDate | Sun Sep 28 11:47:50 EDT 2025 Sat Sep 27 20:04:20 EDT 2025 Sun Sep 28 10:47:21 EDT 2025 Sun Sep 28 10:06:58 EDT 2025 Mon Jun 30 02:30:41 EDT 2025 Wed Apr 02 07:15:29 EDT 2025 Tue Jul 01 00:26:41 EDT 2025 Thu Apr 24 22:52:55 EDT 2025 Tue Aug 26 16:40:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | reflection loss Absorption Magnetic permeability Carbonyl iron radar absorbing material (RAM) permeability Rubbers Magnetic materials Permittivity Magnetic properties |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c511t-bac6f0604d8a800aaef5c32758365018247c2229d88fd6651c62b770d1e6f0823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 865459373 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_889388996 ieee_primary_1597426 proquest_miscellaneous_28910683 proquest_journals_865459373 pascalfrancis_primary_17581769 crossref_citationtrail_10_1109_TMAG_2005_862763 proquest_miscellaneous_28016292 proquest_miscellaneous_28138619 crossref_primary_10_1109_TMAG_2005_862763 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-03-01 |
PublicationDateYYYYMMDD | 2006-03-01 |
PublicationDate_xml | – month: 03 year: 2006 text: 2006-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on magnetics |
PublicationTitleAbbrev | TMAG |
PublicationYear | 2006 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 yong (ref4) 2003; 4 jiang (ref15) 2003 guan (ref16) 1992 nation (ref6) 1971; mtt 19 ref8 ref7 deng (ref1) 1999; 30 zhao (ref11) 2004; 26 ref9 ref3 feng (ref5) 2005; 35 liu (ref2) 2003 feng (ref10) 2005; 37 pitman (ref14) 1991; 138 |
References_xml | – volume: 4 start-page: 619 year: 2003 ident: ref4 article-title: complex permittivity and permeability of carbonyl iron powders at microwave frequencies publication-title: IEEE Antennas and Propagation Society Int Symp – ident: ref12 doi: 10.1109/TIM.2005.853346 – ident: ref8 doi: 10.1109/20.278872 – start-page: 321 year: 1992 ident: ref16 publication-title: Physical Property of Inorganic Materials – ident: ref13 doi: 10.1088/0022-3727/23/3/014 – volume: 26 start-page: 7 year: 2004 ident: ref11 article-title: the preparation and character of carbonyl iron publication-title: J Wuhan Univ Technol – volume: 35 start-page: 37 year: 2005 ident: ref5 article-title: effects of carbonyl iron powder on mechanical and electromagnetic properties of rubber radar absorbing patch publication-title: Aerosp Mater Technol – ident: ref3 doi: 10.1016/S0141-3910(00)00198-1 – volume: mtt 19 start-page: 65 year: 1971 ident: ref6 article-title: application of ferrite to electromagnetic wave absorber and its characteristics publication-title: IEEE Trans Microw Theory Tech – start-page: 757 year: 2003 ident: ref2 article-title: preparation and microwave absorbing property of nanosize pszfe magnetic particles publication-title: Acta Poly Sin – volume: 138 start-page: 223 year: 1991 ident: ref14 article-title: radar absorbers: better by design publication-title: Radar and Signal Processing IEE Proceedings F doi: 10.1049/ip-f-2.1991.0029 – ident: ref7 doi: 10.1109/20.281188 – ident: ref9 doi: 10.1063/1.1852371 – start-page: 402 year: 2003 ident: ref15 publication-title: Condensed Magnetic Matter – volume: 30 start-page: 118 year: 1999 ident: ref1 article-title: the development and application of magnetic materials in the field of ram publication-title: J Funct Mater – volume: 37 start-page: 222 year: 2005 ident: ref10 article-title: optimum design of microwave absorbing materials based on modified genetic algorithms publication-title: J Nanjing Univ Aeron Astron |
SSID | ssj0014510 |
Score | 2.2583373 |
Snippet | We measured the effective complex magnetic permeability /spl mu//sub eff//sup */ and dielectric permittivity /spl epsiv//sub eff//sup */ spectra in rubber... The results indicate that the effective complex magnetic permeability and dielectric permittivity values of the RAM increase as the carbonyl iron volume... We measured the effective complex magnetic permeabilitymu_ effastand dielectric permittivityvarepsilon_ effastspectra in rubber radar absorbing material (RAM)... We measured the effective complex magnetic permeability mu sub(eff) super(*) and dielectric permittivity member of sub(eff) super(*) spectra in rubber radar... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 363 |
SubjectTerms | Absorption Carbonyl iron Carbonyls Cross-disciplinary physics: materials science; rheology Dielectric materials Electromagnetic wave absorption Exact sciences and technology Frequency Iron Magnetic materials Magnetism Materials science Mathematical analysis Organic materials Other topics in materials science Permeability Permittivity Physics Radar radar absorbing material (RAM) Random access memory Reflection reflection loss Rubber Volume fraction |
Title | Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials |
URI | https://ieeexplore.ieee.org/document/1597426 https://www.proquest.com/docview/865459373 https://www.proquest.com/docview/28016292 https://www.proquest.com/docview/28138619 https://www.proquest.com/docview/28910683 https://www.proquest.com/docview/889388996 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BUqX2UCi06kIBH3qp1OzmZcc5ogqKkLYnkJB6iMaOw6ElQcnm0l_fGXt3oa9VD5EiZezEGT--sWe-AXhfZwlqiTIqCeBHeWowQqmaSMqiSZjON_bE8_Mv6vImv7qVt1vwcR0L45zzzmduyrf-LL_u7MhbZbOE0W-qtmGbulmI1VqfGOQyCeEmiea08fnqSDIuZ9fzs89h94Tguyf8fLIE-Zwq7BGJA_2UJmSz-GNi9qvNxS7MV98ZnEy-TceFmdofv1E4_m9D9uDlEnaKs9BPXsGWa_fhxRMywn145p1B7XAAX89Dbpx7vGs5xlFgWws0Q9f7-UU88AZ-z0ysomuExd6we7vggLlZPxrjetFjjX0oQ6b3nSBcHLr6a7i5OL_-dBktkzBElrDYIjJoVcMMO7VGApeIrpE2S8nMyBSTAaZ5YTkneK11UyslE6tSUxRxnTgqp9PsDey0Xevegihs2RgV16UxeU4ws7SFxCzXDuPCoWomMFvppbJLhnJOlPG98pZKXFasSU6cKaugyQl8WJd4COwcG2QPWBGPckEHEzj5RfWPz6mJSaHKCRyt-kK1HN8DVUnIk5Ad1Xq6fkoDk09bsHXdOFQprf0qLdNNEkmmyYDdJEFoTml6i_iHhCa8SVepDv_evCN4HjaN2GvuHews-tEdE4xamBM_fn4C5MgaZQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQceLQglkLrAxckspuXHedYoZYFuj1tpUocorHj9AAkVXZz4dczY-9uy2vFIVKkjJ0448c39sw3AG_qLEEtUUYlAfwoTw1GKFUTSVk0CdP5xp54fnauphf5p0t5uQPvNrEwzjnvfObGfOvP8uvODrxVNkkY_abqDtyVZFXoEK21OTPIZRICThLNiePz9aFkXE7ms-MPYf-EALyn_Ly1CPmsKuwTiQv6LU3IZ_HH1OzXm9PHMFt_aXAz-ToelmZsf_xG4vi_TXkCj1bAUxyHnvIUdly7Bw9v0RHuwT3vDmoX-_DlJGTH-Y5XLUc5CmxrgWbR9X6GEde8hd8zF6voGmGxN-zgLjhkbtIPxrhe9FhjH8qQ8X0lCBmHzv4MLk5P5u-n0SoNQ2QJjS0jg1Y1zLFTayR4iegaabOUDI1MMR1gmheWs4LXWje1UjKxKjVFEdeJo3I6zZ7Dbtu17gWIwpaNUXFdGpPnBDRLW0jMcu0wLhyqZgSTtV4qu-Io51QZ3ypvq8RlxZrk1JmyCpocwdtNievAz7FFdp8VcSMXdDCCw19Uf_OcmpgUqhzBwbovVKsRvqAqCXsStqNajzZPaWjyeQu2rhsWVUqrv0rLdJtEkmkyYbdJEJ5Tmt4i_iGhCXHSVaqXf2_eEdyfzmdn1dnH888H8CBsIbEP3SvYXfaDe02gamkO_Vj6Cdi4Hbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic+and+absorption+properties+of+carbonyl+iron%2Frubber+radar+absorbing+materials&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Yong-Bao+Feng&rft.au=Tai+Qiu&rft.au=Chun-Ying+Shen&rft.au=Xiao-Yun+Li&rft.date=2006-03-01&rft.issn=0018-9464&rft.volume=42&rft.issue=3&rft.spage=363&rft.epage=368&rft_id=info:doi/10.1109%2FTMAG.2005.862763&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMAG_2005_862763 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon |