Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials

We measured the effective complex magnetic permeability /spl mu//sub eff//sup */ and dielectric permittivity /spl epsiv//sub eff//sup */ spectra in rubber radar absorbing material (RAM) with various carbonyl iron volume fractions by using the transmission/reflection method with a vector network anal...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 42; no. 3; pp. 363 - 368
Main Authors Yong-Bao Feng, Yong-Bao Feng, Tai Qiu, Tai Qiu, Chun-Ying Shen, Chun-Ying Shen, Xiao-Yun Li, Xiao-Yun Li
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9464
1941-0069
DOI10.1109/TMAG.2005.862763

Cover

More Information
Summary:We measured the effective complex magnetic permeability /spl mu//sub eff//sup */ and dielectric permittivity /spl epsiv//sub eff//sup */ spectra in rubber radar absorbing material (RAM) with various carbonyl iron volume fractions by using the transmission/reflection method with a vector network analyzer. We studied the effects of carbonyl iron content and rubber thickness on the microwave absorption properties in the frequency range of 2.6 to 18 GHz. Our mathematical analysis is based on electromagnetic theory. The results indicate that the effective complex magnetic permeability and dielectric permittivity values of the RAM increase as the carbonyl iron volume fraction increases. For sample thickness of 3.0 mm, an increase in carbonyl iron content reduces the minimum reflection loss from -1.3 to -23.9 dB and shifts the frequency of the minimum reflection loss from 15.5 to 3.5 GHz. For an equal volume fraction of carbonyl iron, the frequency of the minimum reflection loss decreases as the thickness is increased. However, the dip in the reflection loss plot (in decibels) initially decreases to a minimum value before it increases with a further increase in thickness. We determined the value of the reflection loss for the samples by the impedance matching degree (reflection coefficient), which depends on the thickness and composition of the RAM.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2005.862763