Simulation of extreme heat waves with empirical importance sampling
Simulating ensembles of extreme events is a necessary task to evaluate their probability distribution and analyze their meteorological properties. Algorithms of importance sampling have provided a way to simulate trajectories of dynamical systems (like climate models) that yield extreme behavior, li...
Saved in:
| Published in | Geoscientific Model Development Vol. 13; no. 2; pp. 763 - 781 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
25.02.2020
European Geosciences Union Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X 1991-959X |
| DOI | 10.5194/gmd-13-763-2020 |
Cover
| Summary: | Simulating ensembles of extreme events is a necessary task to evaluate their probability distribution and analyze their meteorological properties. Algorithms of importance sampling have provided a way to simulate trajectories of dynamical systems (like climate models) that yield extreme behavior, like heat waves. Such algorithms also give access to the return periods of such events. We present an adaptation based on circulation analogues of importance sampling to provide a data-based algorithm that simulates extreme events like heat waves in a realistic way. This algorithm is a modification of a stochastic weather generator, which gives more weight to trajectories with higher temperatures. This presentation outlines the methodology using European heat waves and illustrates the spatial and temporal properties of simulations. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X 1991-959X |
| DOI: | 10.5194/gmd-13-763-2020 |