Ordered Mesoporous Carbons with Well-Dispersed Nickel or Platinum Nanoparticles for Room Temperature Hydrogen Adsorption
A facile mechanochemical method was used for the synthesis of ordered mesoporous carbons (OMCs) with well-dispersed metal nanoparticles. The one-pot ball milling of tannins with a metal salt in the presence of a block copolymer followed by thermal treatment led to Ni- or Pt-embedded OMCs with high s...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 18; p. 6551 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1420-3049 1420-3049 |
DOI | 10.3390/molecules28186551 |
Cover
Summary: | A facile mechanochemical method was used for the synthesis of ordered mesoporous carbons (OMCs) with well-dispersed metal nanoparticles. The one-pot ball milling of tannins with a metal salt in the presence of a block copolymer followed by thermal treatment led to Ni- or Pt-embedded OMCs with high specific surface areas (up to 600 m2·g−1) and large pore volumes (up to ~0.5 cm3·g−1). The as-prepared OMC-based samples exhibited hexagonally ordered cylindrical mesopores with narrow pore size distributions (average pore size ~7 nm), which implies sufficient long-range copolymer-assisted self-assembly of the tannin-derived polymer upon milling even in the presence of a metal salt. The homogenous decoration of carbons with small-sized metal (Ni or Pt) particles was essential to provide H2 storage capacities up to 0.33 wt.% at 25 °C and under 100 bar. The presented synthesis strategy seems to have great potential in the practical uses of functionalized polymers and carbons for applications in adsorption and catalysis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28186551 |