Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium( iii ) metal-based compound
Targeting protein–protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed...
Saved in:
Published in | Chemical science (Cambridge) Vol. 8; no. 7; pp. 4756 - 4763 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2041-6520 2041-6539 2041-6539 |
DOI | 10.1039/C7SC00311K |
Cover
Abstract | Targeting protein–protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed into clinical drugs. Meanwhile, the striking array of distinctive properties exhibited by metal compounds renders them attractive scaffolds for the development of bioactive leads. Here, we report the identification of iridium(
iii
) compounds as inhibitors of the H-Ras/Raf-1 PPI. The lead iridium(
iii
) compound
1
exhibited potent inhibitory activity against the H-Ras/Raf-1 interaction and its signaling pathway
in vitro
and
in vivo
, and also directly engaged both H-Ras and Raf-1-RBD in cell lysates. Moreover,
1
repressed tumor growth in a mouse renal xenograft tumor model. Intriguingly, the
Δ
-enantiomer of
1
showed superior potency in the biological assays compared to
Λ-1
or racemic
1
. These compounds could potentially be used as starting scaffolds for the development of more potent Ras/Raf PPI inhibitors for the treatment of kidney cancer or other proliferative diseases. |
---|---|
AbstractList | Targeting protein-protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed into clinical drugs. Meanwhile, the striking array of distinctive properties exhibited by metal compounds renders them attractive scaffolds for the development of bioactive leads. Here, we report the identification of iridium(iii) compounds as inhibitors of the H-Ras/Raf-1 PPI. The lead iridium(iii) compound 1 exhibited potent inhibitory activity against the H-Ras/Raf-1 interaction and its signaling pathway in vitro and in vivo, and also directly engaged both H-Ras and Raf-1-RBD in cell lysates. Moreover, 1 repressed tumor growth in a mouse renal xenograft tumor model. Intriguingly, the Delta -enantiomer of 1 showed superior potency in the biological assays compared to Lambda -1 or racemic 1. These compounds could potentially be used as starting scaffolds for the development of more potent Ras/Raf PPI inhibitors for the treatment of kidney cancer or other proliferative diseases. Targeting protein–protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed into clinical drugs. Meanwhile, the striking array of distinctive properties exhibited by metal compounds renders them attractive scaffolds for the development of bioactive leads. Here, we report the identification of iridium( iii ) compounds as inhibitors of the H-Ras/Raf-1 PPI. The lead iridium( iii ) compound 1 exhibited potent inhibitory activity against the H-Ras/Raf-1 interaction and its signaling pathway in vitro and in vivo , and also directly engaged both H-Ras and Raf-1-RBD in cell lysates. Moreover, 1 repressed tumor growth in a mouse renal xenograft tumor model. Intriguingly, the Δ -enantiomer of 1 showed superior potency in the biological assays compared to Λ-1 or racemic 1 . These compounds could potentially be used as starting scaffolds for the development of more potent Ras/Raf PPI inhibitors for the treatment of kidney cancer or other proliferative diseases. Targeting protein-protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed into clinical drugs. Meanwhile, the striking array of distinctive properties exhibited by metal compounds renders them attractive scaffolds for the development of bioactive leads. Here, we report the identification of iridium(iii) compounds as inhibitors of the H-Ras/Raf-1 PPI. The lead iridium(iii) compound exhibited potent inhibitory activity against the H-Ras/Raf-1 interaction and its signaling pathway and , and also directly engaged both H-Ras and Raf-1-RBD in cell lysates. Moreover, repressed tumor growth in a mouse renal xenograft tumor model. Intriguingly, the -enantiomer of showed superior potency in the biological assays compared to or racemic . These compounds could potentially be used as starting scaffolds for the development of more potent Ras/Raf PPI inhibitors for the treatment of kidney cancer or other proliferative diseases. This study reports the first use of an iridium(iii) compound and its enantiomer to inhibit the H-Ras/Raf-I PPI in vitro and repress renal cancer xenografts in vivo. Targeting protein–protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed into clinical drugs. Meanwhile, the striking array of distinctive properties exhibited by metal compounds renders them attractive scaffolds for the development of bioactive leads. Here, we report the identification of iridium(iii) compounds as inhibitors of the H-Ras/Raf-1 PPI. The lead iridium(iii) compound 1 exhibited potent inhibitory activity against the H-Ras/Raf-1 interaction and its signaling pathway in vitro and in vivo, and also directly engaged both H-Ras and Raf-1-RBD in cell lysates. Moreover, 1 repressed tumor growth in a mouse renal xenograft tumor model. Intriguingly, the Δ-enantiomer of 1 showed superior potency in the biological assays compared to Λ-1 or racemic 1. These compounds could potentially be used as starting scaffolds for the development of more potent Ras/Raf PPI inhibitors for the treatment of kidney cancer or other proliferative diseases. Targeting protein-protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed into clinical drugs. Meanwhile, the striking array of distinctive properties exhibited by metal compounds renders them attractive scaffolds for the development of bioactive leads. Here, we report the identification of iridium(iii) compounds as inhibitors of the H-Ras/Raf-1 PPI. The lead iridium(iii) compound 1 exhibited potent inhibitory activity against the H-Ras/Raf-1 interaction and its signaling pathway in vitro and in vivo, and also directly engaged both H-Ras and Raf-1-RBD in cell lysates. Moreover, 1 repressed tumor growth in a mouse renal xenograft tumor model. Intriguingly, the Δ-enantiomer of 1 showed superior potency in the biological assays compared to Λ-1 or racemic 1. These compounds could potentially be used as starting scaffolds for the development of more potent Ras/Raf PPI inhibitors for the treatment of kidney cancer or other proliferative diseases.Targeting protein-protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed into clinical drugs. Meanwhile, the striking array of distinctive properties exhibited by metal compounds renders them attractive scaffolds for the development of bioactive leads. Here, we report the identification of iridium(iii) compounds as inhibitors of the H-Ras/Raf-1 PPI. The lead iridium(iii) compound 1 exhibited potent inhibitory activity against the H-Ras/Raf-1 interaction and its signaling pathway in vitro and in vivo, and also directly engaged both H-Ras and Raf-1-RBD in cell lysates. Moreover, 1 repressed tumor growth in a mouse renal xenograft tumor model. Intriguingly, the Δ-enantiomer of 1 showed superior potency in the biological assays compared to Λ-1 or racemic 1. These compounds could potentially be used as starting scaffolds for the development of more potent Ras/Raf PPI inhibitors for the treatment of kidney cancer or other proliferative diseases. |
Author | Tian, Jinglin Lin, Sheng Ma, Dik-Lung Wang, Wanhe Cai, Zongwei Huang, Shi-Ying Liu, Li-Juan Hong, Yanjun Li, Guodong Leung, Chung-Hang Wang, Hui-Min David |
AuthorAffiliation | b Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . Email: edmondma@hkbu.edu.hk f Graduate Institute of Biomedical Engineering , National Chung Hsing University , Taichung 402 , Taiwan . Email: davidw@dragon.nchu.edu.tw c College of Oceanology and Food Science , Quanzhou Normal University , Quanzhou 362000 , China d Key Laboratory for the Development of Bioactive Material from Marine Algae , Quanzhou 362000 , China e Partner State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , 224 Waterloo Road , Kowloon Tong , Hong Kong SAR , P. R. China . Email: zwcai@hkbu.edu.hk a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China . Email: duncanleung@umac.mo |
AuthorAffiliation_xml | – name: b Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . Email: edmondma@hkbu.edu.hk – name: e Partner State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , 224 Waterloo Road , Kowloon Tong , Hong Kong SAR , P. R. China . Email: zwcai@hkbu.edu.hk – name: a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China . Email: duncanleung@umac.mo – name: d Key Laboratory for the Development of Bioactive Material from Marine Algae , Quanzhou 362000 , China – name: f Graduate Institute of Biomedical Engineering , National Chung Hsing University , Taichung 402 , Taiwan . Email: davidw@dragon.nchu.edu.tw – name: c College of Oceanology and Food Science , Quanzhou Normal University , Quanzhou 362000 , China |
Author_xml | – sequence: 1 givenname: Li-Juan surname: Liu fullname: Liu, Li-Juan organization: State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China – sequence: 2 givenname: Wanhe surname: Wang fullname: Wang, Wanhe organization: Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China – sequence: 3 givenname: Shi-Ying surname: Huang fullname: Huang, Shi-Ying organization: College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China, Key Laboratory for the Development of Bioactive Material from Marine Algae – sequence: 4 givenname: Yanjun surname: Hong fullname: Hong, Yanjun organization: Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, P. R. China – sequence: 5 givenname: Guodong surname: Li fullname: Li, Guodong organization: State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China – sequence: 6 givenname: Sheng surname: Lin fullname: Lin, Sheng organization: Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China – sequence: 7 givenname: Jinglin surname: Tian fullname: Tian, Jinglin organization: Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, P. R. China – sequence: 8 givenname: Zongwei surname: Cai fullname: Cai, Zongwei organization: Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, P. R. China – sequence: 9 givenname: Hui-Min David orcidid: 0000-0002-3407-9568 surname: Wang fullname: Wang, Hui-Min David organization: Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taiwan – sequence: 10 givenname: Dik-Lung surname: Ma fullname: Ma, Dik-Lung organization: Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China – sequence: 11 givenname: Chung-Hang orcidid: 0000-0003-2988-3786 surname: Leung fullname: Leung, Chung-Hang organization: State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28959398$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1u1DAQhSNUREvpDQ-AfFlAof5JnPgGCa0KVFRCKnAdjZ1J15DYqZ0s3ZfgmfF2l5a_i86NLc13jnzG8zjbc95hlj1l9BWjQp0sqk8LSgVjHx5kB5wWLJelUHu3d073s6MYv9JUQrCSV4-yfV6rUglVH2Q_ztzSajtZ74jvyLREcgHx5AI6Yt2EAcxNC1xLAo4BY9yRAR30xIAzGMg1On8ZoJtiUpGVXXmi10lEEuSSwYDBGmKDbe08HBNrLXlOBpygzzVEbInxw-hn1z7JHnbQRzzanYfZl7ennxfv8_OP784Wb85zUzI65ZpLKUxXaKiRGwZVjaauodOqpbxG2WnNWl1zpUulCyULAUZQWlIlDcPCiMPs5dZ3diOsv0PfN2OwA4R1w2izGWxjqmhuBvst0a-39DjrAVuDbgpwp_Bgmz87zi6bS79qSpmcyioZHO8Mgr-aMU7NYKPBvgeHfo4NU0XJUxXyHihPnyqlZPdBy7pOqTfos98T3D791yIk4MUWMMHHGLD7Zx53i5Zg-hds7ASbRUnpbf8_yU8MvNVr |
CitedBy_id | crossref_primary_10_3390_molecules24244428 crossref_primary_10_1002_zaac_202300169 crossref_primary_10_1002_ejic_202300001 crossref_primary_10_1016_j_jhazmat_2020_122278 crossref_primary_10_1021_acs_analchem_8b03062 crossref_primary_10_1002_chem_202100438 crossref_primary_10_1039_C7SC04798C crossref_primary_10_1111_jcmm_15994 crossref_primary_10_1039_d0mt00060d crossref_primary_10_1155_2020_2647670 crossref_primary_10_1039_C9SC00931K crossref_primary_10_1021_acschemneuro_8b00122 crossref_primary_10_1016_j_inoche_2019_107594 crossref_primary_10_1021_acs_inorgchem_3c00685 crossref_primary_10_1039_C7AN01632H crossref_primary_10_1039_D0SC03975F crossref_primary_10_3390_inorganics7030031 crossref_primary_10_1039_C9DT00259F crossref_primary_10_1007_s12010_018_2835_y crossref_primary_10_1186_s13045_020_00850_0 crossref_primary_10_1073_pnas_2316615121 crossref_primary_10_1039_C8DT02461H crossref_primary_10_1016_j_ejmech_2020_112748 crossref_primary_10_1016_j_jiec_2021_09_034 crossref_primary_10_1016_j_molliq_2021_118446 crossref_primary_10_1002_slct_202204672 crossref_primary_10_1007_s13206_022_00093_w crossref_primary_10_1016_j_ejmech_2023_115995 crossref_primary_10_1039_C9DT01307E crossref_primary_10_1021_acs_jpclett_9b01225 crossref_primary_10_1039_C9DT00054B crossref_primary_10_3390_biom10111535 crossref_primary_10_1021_acs_inorgchem_2c03279 crossref_primary_10_1002_cam4_2322 crossref_primary_10_1016_j_ccr_2020_213267 crossref_primary_10_2174_1573412914666180621110432 crossref_primary_10_2174_1573412914666180530073613 crossref_primary_10_1016_j_biopha_2019_109390 crossref_primary_10_1016_j_bios_2019_111719 crossref_primary_10_1016_j_dyepig_2020_108220 crossref_primary_10_1093_nar_gkz152 crossref_primary_10_3390_ijms20020341 crossref_primary_10_1038_s41598_018_30991_9 crossref_primary_10_1021_acs_inorgchem_8b02256 crossref_primary_10_1007_s00216_018_1243_z crossref_primary_10_1002_ejic_202300793 crossref_primary_10_1016_j_apcatb_2019_118256 crossref_primary_10_1016_j_ccr_2021_214129 crossref_primary_10_2174_0929867325666181009123218 crossref_primary_10_1016_j_phymed_2019_152952 crossref_primary_10_3390_ijms24087373 crossref_primary_10_1021_acsomega_9b00281 crossref_primary_10_1016_j_jinorgbio_2022_112050 crossref_primary_10_1021_acsami_9b16637 crossref_primary_10_1002_jsfa_10063 crossref_primary_10_1016_j_ejmech_2024_116648 crossref_primary_10_1021_acsami_0c05141 crossref_primary_10_1016_j_bios_2019_111416 crossref_primary_10_2174_0929867325666180117102233 crossref_primary_10_4155_fmc_2018_0012 crossref_primary_10_3390_pharmaceutics15122750 crossref_primary_10_1002_chem_201705362 crossref_primary_10_1021_acs_jmedchem_3c01156 crossref_primary_10_1016_j_arabjc_2018_06_016 crossref_primary_10_1039_C8QI00920A crossref_primary_10_1039_C8TC02184H crossref_primary_10_3390_cells8030255 crossref_primary_10_1039_C9QI01492F crossref_primary_10_3892_mmr_2019_9944 crossref_primary_10_1007_s00604_018_2887_2 crossref_primary_10_1016_j_ccr_2023_215231 crossref_primary_10_1016_j_apsb_2018_10_006 crossref_primary_10_1016_j_jinorgbio_2019_110976 crossref_primary_10_1039_C8NJ00314A crossref_primary_10_1016_j_dyepig_2021_109925 crossref_primary_10_1155_2020_4946902 crossref_primary_10_1039_C8CC09211G crossref_primary_10_1016_j_ccr_2018_01_010 crossref_primary_10_1039_C7CC07776A crossref_primary_10_1016_j_jelechem_2018_09_036 crossref_primary_10_1002_anie_202015009 crossref_primary_10_1039_C8DT00783G crossref_primary_10_1155_2020_3425147 crossref_primary_10_1039_C8SC01142G crossref_primary_10_1016_j_dyepig_2018_09_044 crossref_primary_10_1002_aoc_4746 crossref_primary_10_1016_j_jinorgbio_2018_11_007 crossref_primary_10_1021_acs_accounts_8b00011 crossref_primary_10_1016_j_biomaterials_2017_12_008 crossref_primary_10_1021_acsptsci_9b00107 crossref_primary_10_1021_acsabm_9b01156 crossref_primary_10_1016_j_jinorgbio_2019_02_002 crossref_primary_10_1016_j_arabjc_2019_08_002 crossref_primary_10_1016_j_drup_2023_100977 crossref_primary_10_1016_j_jinorgbio_2019_110909 crossref_primary_10_1016_j_canlet_2019_01_018 crossref_primary_10_1002_ange_202015009 crossref_primary_10_1002_aoc_4633 crossref_primary_10_1021_acs_jmedchem_0c01957 crossref_primary_10_1002_zaac_202200047 crossref_primary_10_1021_acs_inorgchem_9b03006 crossref_primary_10_1002_zaac_201900317 crossref_primary_10_1016_j_ejmech_2020_112763 crossref_primary_10_1016_j_dyepig_2018_10_019 crossref_primary_10_3892_ol_2019_10680 |
Cites_doi | 10.1038/nature11503 10.1016/j.tips.2016.05.008 10.1002/chem.201601542 10.4155/fmc.15.22 10.1016/j.bios.2015.02.030 10.1039/C5SC02321A 10.1039/c2dt30654a 10.1039/C4CC10014J 10.1093/carcin/bgp337 10.1038/nchem.1375 10.1038/srep36044 10.2174/138161210791209009 10.1056/NEJMoa0708857 10.1038/nchembio.1211 10.1038/nrd.2016.29 10.1016/j.tips.2013.04.007 10.1039/C6DT03328H 10.1038/sj.onc.1210422 10.1146/annurev-pharmtox-011613-140028 10.1021/acs.inorgchem.5b01349 10.1002/anie.200353089 10.1038/srep42860 10.1093/protein/14.1.39 10.1016/j.bbamcr.2007.05.001 10.1039/C6CC06155A 10.1021/acs.jmedchem.6b00112 10.1038/468851a 10.1074/jbc.271.1.233 10.1038/sj.onc.1210421 10.1021/ar500310z 10.1016/j.cell.2016.03.045 10.1039/C6DT90135B 10.1016/S0140-6736(15)60054-X 10.1038/sj.leu.2402945 10.1158/0008-5472.CAN-08-4408 10.1002/cplu.201400014 10.18632/oncotarget.7369 10.1056/NEJMoa060655 10.4155/fmc.15.138 10.1002/anie.201404686 10.2174/092986712799320510 10.1016/j.febslet.2014.06.025 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry 2017 2017 |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2017 2017 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7TO H94 7X8 5PM ADTOC UNPAY |
DOI | 10.1039/C7SC00311K |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef Oncogenes and Growth Factors Abstracts PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 4763 |
ExternalDocumentID | 10.1039/c7sc00311k PMC5603957 28959398 10_1039_C7SC00311K |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ACRPL ADBBV ADMRA ADNMO AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI AOIJS APEMP ASPBG AUDPV AVWKF AZFZN BCNDV BLAPV BSQNT C6K CAG CITATION COF D0L ECGLT EE0 EF- F5P FEDTE GROUPED_DOAJ H13 HVGLF HYE HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS ROL RPM RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH -JG AGSTE NPM SMJ 7SR 8BQ 8FD JG9 7TO H94 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c510t-b2663cf4ba8e2c1a78ec88afb9d028e6fbb1db829b59b49643ac3005096c1e4c3 |
IEDL.DBID | UNPAY |
ISSN | 2041-6520 2041-6539 |
IngestDate | Tue Aug 19 23:20:35 EDT 2025 Tue Sep 30 16:55:51 EDT 2025 Wed Oct 01 15:07:42 EDT 2025 Fri Sep 05 10:16:31 EDT 2025 Thu Sep 04 23:06:52 EDT 2025 Thu Jan 02 22:22:44 EST 2025 Tue Jul 01 03:46:13 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c510t-b2663cf4ba8e2c1a78ec88afb9d028e6fbb1db829b59b49643ac3005096c1e4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-3407-9568 0000-0003-2988-3786 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2017/sc/c7sc00311k |
PMID | 28959398 |
PQID | 1925880501 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | unpaywall_primary_10_1039_c7sc00311k pubmedcentral_primary_oai_pubmedcentral_nih_gov_5603957 proquest_miscellaneous_1945222246 proquest_miscellaneous_1926526661 proquest_miscellaneous_1925880501 pubmed_primary_28959398 crossref_primary_10_1039_C7SC00311K crossref_citationtrail_10_1039_C7SC00311K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2017 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Roberts (C7SC00311K-(cit24)/*[position()=1]) 2007; 26 Zhang (C7SC00311K-(cit3)/*[position()=1]) 2012; 490 Liu (C7SC00311K-(cit34)/*[position()=1]) 2016; 52 Niault (C7SC00311K-(cit20)/*[position()=1]) 2010; 31 Hess (C7SC00311K-(cit11)/*[position()=1]) 2015; 7 Bratsos (C7SC00311K-(cit16)/*[position()=1]) 2012; 41 Cseh (C7SC00311K-(cit22)/*[position()=1]) 2014; 588 Gothe (C7SC00311K-(cit8)/*[position()=1]) 2016; 22 Oka (C7SC00311K-(cit26)/*[position()=1]) 1995; 55 Escudier (C7SC00311K-(cit28)/*[position()=1]) 2007; 356 Rusconi (C7SC00311K-(cit21)/*[position()=1]) 2012; 19 Zhong (C7SC00311K-(cit36)/*[position()=1]) 2014; 79 Liu (C7SC00311K-(cit35)/*[position()=1]) 2016; 7 Metzler-Nolte (C7SC00311K-(cit10)/*[position()=1]) 2016; 45 Athuluri-Divakar (C7SC00311K-(cit31)/*[position()=1]) 2016; 165 Lee (C7SC00311K-(cit40)/*[position()=1]) 2015; 69 Simon (C7SC00311K-(cit39)/*[position()=1]) 2013; 9 Song (C7SC00311K-(cit42)/*[position()=1]) 2012; 4 Skwarczynska (C7SC00311K-(cit2)/*[position()=1]) 2015; 7 Ivanov (C7SC00311K-(cit6)/*[position()=1]) 2013; 34 Llovet (C7SC00311K-(cit30)/*[position()=1]) 2008; 359 Drugan (C7SC00311K-(cit38)/*[position()=1]) 1996; 271 Meng (C7SC00311K-(cit15)/*[position()=1]) 2009; 69 Jin (C7SC00311K-(cit7)/*[position()=1]) 2014; 54 Ma (C7SC00311K-(cit12)/*[position()=1]) 2014; 53 Waldmann (C7SC00311K-(cit23)/*[position()=1]) 2004; 43 Chang (C7SC00311K-(cit41)/*[position()=1]) 2003; 17 Scott (C7SC00311K-(cit1)/*[position()=1]) 2016; 15 Yang (C7SC00311K-(cit32)/*[position()=1]) 2017; 7 Kang (C7SC00311K-(cit44)/*[position()=1]) 2016; 59 Dhillon (C7SC00311K-(cit19)/*[position()=1]) 2007; 26 Modell (C7SC00311K-(cit5)/*[position()=1]) 2016; 37 Zhong (C7SC00311K-(cit13)/*[position()=1]) 2015; 6 Qiu (C7SC00311K-(cit14)/*[position()=1]) 2016; 45 Gothe (C7SC00311K-(cit9)/*[position()=1]) 2015; 51 Ma (C7SC00311K-(cit18)/*[position()=1]) 2014; 47 Leicht (C7SC00311K-(cit25)/*[position()=1]) 2007; 1773 Liu (C7SC00311K-(cit33)/*[position()=1]) 2016; 6 Bonetta (C7SC00311K-(cit4)/*[position()=1]) 2010; 468 Fujita (C7SC00311K-(cit27)/*[position()=1]) 1988; 48 Frezza (C7SC00311K-(cit17)/*[position()=1]) 2010; 16 Zeng (C7SC00311K-(cit37)/*[position()=1]) 2001; 14 Rajaratnam (C7SC00311K-(cit43)/*[position()=1]) 2015; 54 Boudou-Rouquette (C7SC00311K-(cit29)/*[position()=1]) 2015; 385 28225008 - Sci Rep. 2017 Feb 22;7:42860 27501750 - Dalton Trans. 2016 Aug 16;45(33):12965 27853239 - Sci Rep. 2016 Nov 17;6:36044 28757943 - Chem Sci. 2015 Oct 1;6(10 ):5400-5408 24160698 - Annu Rev Pharmacol Toxicol. 2014;54:435-56 22824892 - Nat Chem. 2012 Jun 10;4(8):615-20 27711294 - Chem Commun (Camb). 2016 Oct 11;52(83):12278-12281 25996072 - Future Med Chem. 2015;7(6):821-30 24937142 - FEBS Lett. 2014 Aug 1;588(15):2398-406 12835716 - Leukemia. 2003 Jul;17(7):1263-93 18650514 - N Engl J Med. 2008 Jul 24;359(4):378-90 19549908 - Cancer Res. 2009 Jul 1;69(13):5458-66 27054262 - J Med Chem. 2016 Apr 28;59(8):4026-31 27722346 - Dalton Trans. 2016 Oct 18;45(41):16144-16147 2457438 - Cancer Res. 1988 Sep 15;48(18):5251-5 27443984 - Chemistry. 2016 Aug 22;22(35):12487-94 27104980 - Cell. 2016 Apr 21;165(3):643-55 27267699 - Trends Pharmacol Sci. 2016 Aug;37(8):702-713 22257058 - Curr Med Chem. 2012;19(8):1164-76 17215530 - N Engl J Med. 2007 Jan 11;356(2):125-34 14735533 - Angew Chem Int Ed Engl. 2004 Jan 16;43(4):454-8 23725674 - Trends Pharmacol Sci. 2013 Jul;34(7):393-400 22580919 - Dalton Trans. 2012 Jun 28;41(24):7358-71 20337575 - Curr Pharm Des. 2010 Jun;16(16):1813-25 17555829 - Biochim Biophys Acta. 2007 Aug;1773(8):1196-212 21150998 - Nature. 2010 Dec 9;468(7325):851-4 26510391 - Future Med Chem. 2015;7(16):2195-219 23508173 - Nat Chem Biol. 2013 Apr;9(4):200-5 26883110 - Oncotarget. 2016 Mar 22;7(12):13965-75 25706704 - Lancet. 2015 Jan 17;385(9964):227-8 24889897 - Angew Chem Int Ed Engl. 2014 Aug 25;53(35):9178-82 26251218 - Inorg Chem. 2015 Aug 17;54(16):8111-20 17496922 - Oncogene. 2007 May 14;26(22):3279-90 7664295 - Cancer Res. 1995 Sep 15;55(18):4182-7 23023127 - Nature. 2012 Oct 25;490(7421):556-60 25369127 - Acc Chem Res. 2014 Dec 16;47(12):3614-31 27050677 - Nat Rev Drug Discov. 2016 Aug;15(8):533-50 11287677 - Protein Eng. 2001 Jan;14(1):39-45 25727032 - Biosens Bioelectron. 2015 Jul 15;69:167-73 8550565 - J Biol Chem. 1996 Jan 5;271(1):233-7 17496923 - Oncogene. 2007 May 14;26(22):3291-310 20047953 - Carcinogenesis. 2010 Jul;31(7):1165-74 |
References_xml | – volume: 490 start-page: 556 year: 2012 ident: C7SC00311K-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/nature11503 – volume: 37 start-page: 702 year: 2016 ident: C7SC00311K-(cit5)/*[position()=1] publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2016.05.008 – volume: 55 start-page: 4182 year: 1995 ident: C7SC00311K-(cit26)/*[position()=1] publication-title: Cancer Res. – volume: 22 start-page: 12487 year: 2016 ident: C7SC00311K-(cit8)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201601542 – volume: 7 start-page: 821 year: 2015 ident: C7SC00311K-(cit11)/*[position()=1] publication-title: Future Med. Chem. doi: 10.4155/fmc.15.22 – volume: 69 start-page: 167 year: 2015 ident: C7SC00311K-(cit40)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.02.030 – volume: 6 start-page: 5400 year: 2015 ident: C7SC00311K-(cit13)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC02321A – volume: 41 start-page: 7358 year: 2012 ident: C7SC00311K-(cit16)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c2dt30654a – volume: 51 start-page: 3151 year: 2015 ident: C7SC00311K-(cit9)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC10014J – volume: 31 start-page: 1165 year: 2010 ident: C7SC00311K-(cit20)/*[position()=1] publication-title: Carcinogenesis doi: 10.1093/carcin/bgp337 – volume: 4 start-page: 615 year: 2012 ident: C7SC00311K-(cit42)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1375 – volume: 6 start-page: 36044 year: 2016 ident: C7SC00311K-(cit33)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep36044 – volume: 16 start-page: 1813 year: 2010 ident: C7SC00311K-(cit17)/*[position()=1] publication-title: Curr. Pharm. Des. doi: 10.2174/138161210791209009 – volume: 359 start-page: 378 year: 2008 ident: C7SC00311K-(cit30)/*[position()=1] publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0708857 – volume: 9 start-page: 200 year: 2013 ident: C7SC00311K-(cit39)/*[position()=1] publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1211 – volume: 15 start-page: 533 year: 2016 ident: C7SC00311K-(cit1)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd.2016.29 – volume: 34 start-page: 393 year: 2013 ident: C7SC00311K-(cit6)/*[position()=1] publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2013.04.007 – volume: 45 start-page: 16144 year: 2016 ident: C7SC00311K-(cit14)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT03328H – volume: 26 start-page: 3291 year: 2007 ident: C7SC00311K-(cit24)/*[position()=1] publication-title: Oncogene doi: 10.1038/sj.onc.1210422 – volume: 54 start-page: 435 year: 2014 ident: C7SC00311K-(cit7)/*[position()=1] publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-011613-140028 – volume: 54 start-page: 8111 year: 2015 ident: C7SC00311K-(cit43)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01349 – volume: 43 start-page: 454 year: 2004 ident: C7SC00311K-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200353089 – volume: 7 start-page: 42860 year: 2017 ident: C7SC00311K-(cit32)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep42860 – volume: 14 start-page: 39 year: 2001 ident: C7SC00311K-(cit37)/*[position()=1] publication-title: Protein Eng. doi: 10.1093/protein/14.1.39 – volume: 1773 start-page: 1196 year: 2007 ident: C7SC00311K-(cit25)/*[position()=1] publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2007.05.001 – volume: 52 start-page: 12278 year: 2016 ident: C7SC00311K-(cit34)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC06155A – volume: 59 start-page: 4026 year: 2016 ident: C7SC00311K-(cit44)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b00112 – volume: 468 start-page: 851 year: 2010 ident: C7SC00311K-(cit4)/*[position()=1] publication-title: Nature doi: 10.1038/468851a – volume: 271 start-page: 233 year: 1996 ident: C7SC00311K-(cit38)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.1.233 – volume: 26 start-page: 3279 year: 2007 ident: C7SC00311K-(cit19)/*[position()=1] publication-title: Oncogene doi: 10.1038/sj.onc.1210421 – volume: 47 start-page: 3614 year: 2014 ident: C7SC00311K-(cit18)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500310z – volume: 48 start-page: 5251 year: 1988 ident: C7SC00311K-(cit27)/*[position()=1] publication-title: Cancer Res. – volume: 165 start-page: 643 year: 2016 ident: C7SC00311K-(cit31)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2016.03.045 – volume: 45 start-page: 12965 year: 2016 ident: C7SC00311K-(cit10)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT90135B – volume: 385 start-page: 227 year: 2015 ident: C7SC00311K-(cit29)/*[position()=1] publication-title: Lancet doi: 10.1016/S0140-6736(15)60054-X – volume: 17 start-page: 1263 year: 2003 ident: C7SC00311K-(cit41)/*[position()=1] publication-title: Leukemia doi: 10.1038/sj.leu.2402945 – volume: 69 start-page: 5458 year: 2009 ident: C7SC00311K-(cit15)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-4408 – volume: 79 start-page: 508 year: 2014 ident: C7SC00311K-(cit36)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201400014 – volume: 7 start-page: 13965 year: 2016 ident: C7SC00311K-(cit35)/*[position()=1] publication-title: Oncotarget doi: 10.18632/oncotarget.7369 – volume: 356 start-page: 125 year: 2007 ident: C7SC00311K-(cit28)/*[position()=1] publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa060655 – volume: 7 start-page: 2195 year: 2015 ident: C7SC00311K-(cit2)/*[position()=1] publication-title: Future Med. Chem. doi: 10.4155/fmc.15.138 – volume: 53 start-page: 9178 year: 2014 ident: C7SC00311K-(cit12)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404686 – volume: 19 start-page: 1164 year: 2012 ident: C7SC00311K-(cit21)/*[position()=1] publication-title: Curr. Med. Chem. doi: 10.2174/092986712799320510 – volume: 588 start-page: 2398 year: 2014 ident: C7SC00311K-(cit22)/*[position()=1] publication-title: FEBS Lett. doi: 10.1016/j.febslet.2014.06.025 – reference: 27050677 - Nat Rev Drug Discov. 2016 Aug;15(8):533-50 – reference: 20047953 - Carcinogenesis. 2010 Jul;31(7):1165-74 – reference: 27501750 - Dalton Trans. 2016 Aug 16;45(33):12965 – reference: 11287677 - Protein Eng. 2001 Jan;14(1):39-45 – reference: 23023127 - Nature. 2012 Oct 25;490(7421):556-60 – reference: 8550565 - J Biol Chem. 1996 Jan 5;271(1):233-7 – reference: 27722346 - Dalton Trans. 2016 Oct 18;45(41):16144-16147 – reference: 28757943 - Chem Sci. 2015 Oct 1;6(10 ):5400-5408 – reference: 24937142 - FEBS Lett. 2014 Aug 1;588(15):2398-406 – reference: 17496922 - Oncogene. 2007 May 14;26(22):3279-90 – reference: 25727032 - Biosens Bioelectron. 2015 Jul 15;69:167-73 – reference: 2457438 - Cancer Res. 1988 Sep 15;48(18):5251-5 – reference: 27054262 - J Med Chem. 2016 Apr 28;59(8):4026-31 – reference: 27104980 - Cell. 2016 Apr 21;165(3):643-55 – reference: 22580919 - Dalton Trans. 2012 Jun 28;41(24):7358-71 – reference: 18650514 - N Engl J Med. 2008 Jul 24;359(4):378-90 – reference: 28225008 - Sci Rep. 2017 Feb 22;7:42860 – reference: 26510391 - Future Med Chem. 2015;7(16):2195-219 – reference: 23725674 - Trends Pharmacol Sci. 2013 Jul;34(7):393-400 – reference: 21150998 - Nature. 2010 Dec 9;468(7325):851-4 – reference: 27711294 - Chem Commun (Camb). 2016 Oct 11;52(83):12278-12281 – reference: 24889897 - Angew Chem Int Ed Engl. 2014 Aug 25;53(35):9178-82 – reference: 20337575 - Curr Pharm Des. 2010 Jun;16(16):1813-25 – reference: 24160698 - Annu Rev Pharmacol Toxicol. 2014;54:435-56 – reference: 22824892 - Nat Chem. 2012 Jun 10;4(8):615-20 – reference: 25706704 - Lancet. 2015 Jan 17;385(9964):227-8 – reference: 22257058 - Curr Med Chem. 2012;19(8):1164-76 – reference: 17215530 - N Engl J Med. 2007 Jan 11;356(2):125-34 – reference: 23508173 - Nat Chem Biol. 2013 Apr;9(4):200-5 – reference: 27443984 - Chemistry. 2016 Aug 22;22(35):12487-94 – reference: 25996072 - Future Med Chem. 2015;7(6):821-30 – reference: 27853239 - Sci Rep. 2016 Nov 17;6:36044 – reference: 25369127 - Acc Chem Res. 2014 Dec 16;47(12):3614-31 – reference: 26883110 - Oncotarget. 2016 Mar 22;7(12):13965-75 – reference: 27267699 - Trends Pharmacol Sci. 2016 Aug;37(8):702-713 – reference: 17555829 - Biochim Biophys Acta. 2007 Aug;1773(8):1196-212 – reference: 19549908 - Cancer Res. 2009 Jul 1;69(13):5458-66 – reference: 14735533 - Angew Chem Int Ed Engl. 2004 Jan 16;43(4):454-8 – reference: 26251218 - Inorg Chem. 2015 Aug 17;54(16):8111-20 – reference: 17496923 - Oncogene. 2007 May 14;26(22):3291-310 – reference: 12835716 - Leukemia. 2003 Jul;17(7):1263-93 – reference: 7664295 - Cancer Res. 1995 Sep 15;55(18):4182-7 |
SSID | ssj0000331527 |
Score | 2.5288682 |
Snippet | Targeting protein–protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI... Targeting protein-protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI... This study reports the first use of an iridium(iii) compound and its enantiomer to inhibit the H-Ras/Raf-I PPI in vitro and repress renal cancer xenografts in... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4756 |
SubjectTerms | Arrays Cancer Chemistry Diseases Inhibitors Lead (metal) Medical services Scaffolds Tumors |
Title | Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium( iii ) metal-based compound |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28959398 https://www.proquest.com/docview/1925880501 https://www.proquest.com/docview/1926526661 https://www.proquest.com/docview/1945222246 https://pubmed.ncbi.nlm.nih.gov/PMC5603957 https://pubs.rsc.org/en/content/articlepdf/2017/sc/c7sc00311k |
UnpaywallVersion | publishedVersion |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAUL databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2021 customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RVUXY dateStart: 20150101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry – providerCode: PRVAUL databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2023 issn: 2041-6520 databaseCode: AKBGW dateStart: 20150101 customDbUrl: https://pubs.rsc.org isFulltext: true eissn: 2041-6539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331527 providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagfRgv3BnhUhmxB_aQdolz8-NUMQ0QEyoUdU-V7dhatM6tchmM38CP5pxcykrRhHiLlOModr74nGN__g4he2HKjBBh7IJzlS54POnKOIlcP_VMxBQqWuE65MeT6HgavJ-Fs5abg2dh4CWKYV40EsEa0nfUaLLlqB3HVWogXffiUaFGKi4UYtI7v036UQjJc4_0pyefDk-xoNxB4LlRWMsytteMd_KkjF9rvOmQtqLMbbLkTmVX4uqbWCyueaKje0251boPNQHlfFiVcqh-_CHv-N-dvE_utjEqPWzsHpBb2j4kO-OuNNwj8vOdPctkTfaiS0MhhqQTUYwmwlCUn8ibwxJU2JTmHdO2tsw1Plgh0nL6XVvkhpmygFb0MrtcUnkFjahGcg7KAsAcTbM8S7Pq4k2WZfv0QkOu4KLnTSmS4bEm1GMyPXr7ZXzstmUdXAUTQOlKiAmYMoEUifaVJ-JEqyQRRvIUgh0dGSm9VCY-lyGXAeqFCcUanRrl6UCxJ6Rnl1Y_JVT7WoowjTm4-oCpSEie-PAkXwR47sU4ZL_7tnPVap5j6Y3FvN57Z3w-jj-P6_H94JDXa9tVo_TxV6tXHUTmMOi4uyKsXlbFHELlECbD8MC70QYwCRnjjTYoco86fw7ZbaC3fh_IjkPOeOKQeAOUawMUC9-8Y7OzWjQcIlvcknXI3hq-W938DbZn_2b2nNxBoDb05RekV-aVfglBWikH9eLGgPQnX6ez00H7Y_4C--ZCmQ |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeygX3o_wkhE90EN2mzhO4mO1oiogKlRYqZwi27HVqFvvKo9C-Q38aGbyWLosqhC3SBlbsfPFMxN__oaQHZ4zKyVPfHCuygePp3yVpLEf5oGNmUZFK_wP-fEoPpxF70_4Sc_NwbMw8BDVuKw6iWAD6TtqNLl60s_jMreQrgfJpNITnVQaMRmc3SRbMYfkeUS2Zkef9r9iQbm9KPBj3soy9tdMDPKkTFxpvO6QNqLMTbLkduOW8vKbnM-veKKDO1251XYMLQHlbNzUaqx__CHv-N-DvEtu9zEq3e_s7pEbxt0n29OhNNwD8vOdOy1US_aiC0shhqTHspocS0tRfqLsDktQ6XJaDkzb1rI02LFGpJX0u3HIDbN1Ba3oRXGxoOoSGlGD5ByUBYA1mhZlkRfN-ZuiKHbpuYFcwUfPm1Mkw2NNqIdkdvD2y_TQ78s6-BoWgNpXEBMwbSMlUxPqQCap0WkqrRI5BDsmtkoFuUpDobhQEeqFSc06nRodmEizR2TkFs48IdSERkmeJwJcfcR0LJVIQ-gplBGee7Ee2R3ebaZ7zXMsvTHP2r13JrJp8nnazu8Hj7xe2S47pY-_Wr0aIJLBpOPuinRm0VQZhMocFkO-F1xrA5iEjPFaGxS5R50_jzzuoLd6HsiOuWAi9UiyBsqVAYqFr99xxWkrGg6RLW7JemRnBd-NYf4G29N_M3tGbiFQO_ryczKqy8a8gCCtVi_7T_EXb4Q_0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+the+Ras%2FRaf+interaction+and+repression+of+renal+cancer+xenografts+in+vivo+by+an+enantiomeric+iridium%28+iii+%29+metal-based+compound&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Liu%2C+Li-Juan&rft.au=Wang%2C+Wanhe&rft.au=Huang%2C+Shi-Ying&rft.au=Hong%2C+Yanjun&rft.date=2017-07-01&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=8&rft.issue=7&rft.spage=4756&rft.epage=4763&rft_id=info:doi/10.1039%2FC7SC00311K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7SC00311K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |