DV-Hop Algorithm Based on Multi-Objective Salp Swarm Algorithm Optimization
The localization of sensor nodes is an important problem in wireless sensor networks. The DV-Hop algorithm is a typical range-free algorithm, but the localization accuracy is not high. To further improve the localization accuracy, this paper designs a DV-Hop algorithm based on multi-objective salp s...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 7; p. 3698 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
03.04.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23073698 |
Cover
| Summary: | The localization of sensor nodes is an important problem in wireless sensor networks. The DV-Hop algorithm is a typical range-free algorithm, but the localization accuracy is not high. To further improve the localization accuracy, this paper designs a DV-Hop algorithm based on multi-objective salp swarm optimization. Firstly, hop counts in the DV-Hop algorithm are subdivided, and the average hop distance is corrected based on the minimum mean-square error criterion and weighting. Secondly, the traditional single-objective optimization model is transformed into a multi-objective optimization model. Then, in the third stage of DV-Hop, the improved multi-objective salp swarm algorithm is used to estimate the node coordinates. Finally, the proposed algorithm is compared with three improved DV-Hop algorithms in two topologies. Compared with DV-Hop, The localization errors of the proposed algorithm are reduced by 50.79% and 56.79% in the two topology environments with different communication radii. The localization errors of different node numbers are decreased by 38.27% and 56.79%. The maximum reductions in localization errors are 38.44% and 56.79% for different anchor node numbers. Based on different regions, the maximum reductions in localization errors are 56.75% and 56.79%. The simulation results show that the accuracy of the proposed algorithm is better than that of DV-Hop, GWO-DV-Hop, SSA-DV-Hop, and ISSA-DV-Hop algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s23073698 |