Detection of Chrysanthemums Inflorescence Based on Improved CR-YOLOv5s Algorithm

Accurate recognition of the flowering stage is a prerequisite for flower yield estimation. In order to improve the recognition accuracy based on the complex image background, such as flowers partially covered by leaves and flowers with insignificant differences in various fluorescence, this paper pr...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 9; p. 4234
Main Authors Zhao, Wentao, Wu, Dasheng, Zheng, Xinyu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.04.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23094234

Cover

More Information
Summary:Accurate recognition of the flowering stage is a prerequisite for flower yield estimation. In order to improve the recognition accuracy based on the complex image background, such as flowers partially covered by leaves and flowers with insignificant differences in various fluorescence, this paper proposed an improved CR-YOLOv5s to recognize flower buds and blooms for chrysanthemums by emphasizing feature representation through an attention mechanism. The coordinate attention mechanism module has been introduced to the backbone of the YOLOv5s so that the network can pay more attention to chrysanthemum flowers, thereby improving detection accuracy and robustness. Specifically, we replaced the convolution blocks in the backbone network of YOLOv5s with the convolution blocks from the RepVGG block structure to improve the feature representation ability of YOLOv5s through a multi-branch structure, further improving the accuracy and robustness of detection. The results showed that the average accuracy of the improved CR-YOLOv5s was as high as 93.9%, which is 4.5% better than that of normal YOLOv5s. This research provides the basis for the automatic picking and grading of flowers, as well as a decision-making basis for estimating flower yield.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23094234