Ablative Hypofractionated Radiation Therapy Enhances Non-Small Cell Lung Cancer Cell Killing via Preferential Stimulation of Necroptosis In Vitro and In Vivo

To investigate how necroptosis (ie, programmed necrosis) is involved in killing of non-small cell lung cancer (NSCLC) after ablative hypofractionated radiation therapy (HFRT). Deoxyribonucleic acid damage, DNA repair, and the death form of NSCLC cells were assessed after radiation therapy. The overe...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 101; no. 1; pp. 49 - 62
Main Authors Wang, Huan-Huan, Wu, Zhi-Qiang, Qian, Dong, Zaorsky, Nicholas G., Qiu, Ming-Han, Cheng, Jing-Jing, Jiang, Chao, Wang, Juan, Zeng, Xian-Liang, Liu, Chun-Lei, Tian, Li-Jun, Ying, Guo-Guang, Meng, Mao-Bin, Hao, Xi-Shan, Yuan, Zhi-Yong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2018
Subjects
Online AccessGet full text
ISSN0360-3016
1879-355X
1879-355X
DOI10.1016/j.ijrobp.2018.01.036

Cover

More Information
Summary:To investigate how necroptosis (ie, programmed necrosis) is involved in killing of non-small cell lung cancer (NSCLC) after ablative hypofractionated radiation therapy (HFRT). Deoxyribonucleic acid damage, DNA repair, and the death form of NSCLC cells were assessed after radiation therapy. The overexpression and silencing of receptor-interacting protein kinases 3 (RIP3, a key protein involved activation of necroptosis)-stable NSCLC cell lines were successfully constructed. The form of cell death, the number and area of colonies, and the regulatory proteins of necroptosis were characterized after radiation therapy in vitro. Finally, NSCLC xenografts and patient specimens were used to examine involvement of necroptosis after ablative HFRT in vivo. Radiation therapy induced expected DNA damage and repair of NSCLC cell lines, but ablative HFRT at ≥10 Gy per fraction preferentially stimulated necroptosis in NSCLC cells and xenografts with high RIP3 expression, as characterized by induction and activation of RIP3 and mixed-lineage kinase domain-like protein and release of immune-activating chemokine high-mobility group box 1. In contrast, RNA interference of RIP3 attenuated ablative HFRT-induced necroptosis and activation of its regulatory proteins. Among central early-stage NSCLC patients receiving stereotactic body radiation therapy, high expression of RIP3 was associated with improved local control and progression-free survival (all P < .05). Ablative HFRT at ≥10 Gy per fraction enhances killing of NSCLC with high RIP3 expression via preferential stimulation of necroptosis. RIP3 may serve as a useful biomarker to predict favorable response to stereotactic body radiation therapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0360-3016
1879-355X
1879-355X
DOI:10.1016/j.ijrobp.2018.01.036