Preclinical Voxel-Based Dosimetry in Theranostics: a Review

Due to the increasing use of preclinical targeted radionuclide therapy (TRT) studies for the development of novel theranostic agents, several studies have been performed to accurately estimate absorbed doses to mice at the voxel level using reference mouse phantoms and Monte Carlo (MC) simulations....

Full description

Saved in:
Bibliographic Details
Published inNuclear medicine and molecular imaging Vol. 54; no. 2; pp. 86 - 97
Main Authors Gupta, Arun, Lee, Min Sun, Kim, Joong Hyun, Lee, Dong Soo, Lee, Jae Sung
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.04.2020
Springer Nature B.V
대한핵의학회
Subjects
Online AccessGet full text
ISSN1869-3474
1869-3482
DOI10.1007/s13139-020-00640-z

Cover

More Information
Summary:Due to the increasing use of preclinical targeted radionuclide therapy (TRT) studies for the development of novel theranostic agents, several studies have been performed to accurately estimate absorbed doses to mice at the voxel level using reference mouse phantoms and Monte Carlo (MC) simulations. Accurate dosimetry is important in preclinical theranostics to interpret radiobiological dose-response relationships and to translate results for clinical use. Direct MC (DMC) simulation is believed to produce more realistic voxel-level dose distribution with high precision because tissue heterogeneities and nonuniform source distributions in patients or animals are considered. Although MC simulation is considered to be an accurate method for voxel-based absorbed dose calculations, it is time-consuming, computationally demanding, and often impractical in daily practice. In this review, we focus on the current status of voxel-based dosimetry methods applied in preclinical theranostics and discuss the need for accurate and fast voxel-based dosimetry methods for pretherapy absorbed dose calculations to optimize the dose computation time in preclinical TRT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1869-3474
1869-3482
DOI:10.1007/s13139-020-00640-z