Absence of Microglial Activation and Maintained Hippocampal Neurogenesis in a Transgenic Mouse Model of Crohn’s Disease

Adult neurogenesis in the hippocampal dentate gyrus (DG) is not only essential for learning and pattern separation, but it is also involved in emotional regulation. This process is vulnerable to local and peripheral inflammation, which is partly mediated by microglia in the DG. As Crohn’s disease (C...

Full description

Saved in:
Bibliographic Details
Published inCells (Basel, Switzerland) Vol. 14; no. 11; p. 841
Main Authors Masanetz, Rebecca Katharina, Mundlos, Hanna, Stolzer, Iris, Winkler, Jürgen, Günther, Claudia, Süß, Patrick
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN2073-4409
2073-4409
DOI10.3390/cells14110841

Cover

More Information
Summary:Adult neurogenesis in the hippocampal dentate gyrus (DG) is not only essential for learning and pattern separation, but it is also involved in emotional regulation. This process is vulnerable to local and peripheral inflammation, which is partly mediated by microglia in the DG. As Crohn’s disease (CD) is associated with neuropsychiatric comorbidity, including depression and cognitive impairment, a reduction in adult hippocampal neurogenesis by chronic gut-derived inflammation has been hypothesized. Here, we present the first study that examined the influence of chronic ileocolitis on microglia in the DG and on adult hippocampal neurogenesis in a transgenic mouse model of CD, which is generated by a constitutive knockout of caspase 8 in intestinal epithelial cells (IECs, Casp8ΔIEC mice). Structural and transcriptional analyses revealed that microglial cell proliferation and density in the DG as well as the expression of genes associated with their homeostasis and activation in the forebrain were maintained in 14- and 24-week-old Casp8ΔIEC mice compared to Casp8fl controls. Furthermore, different stages of adult hippocampal neurogenesis, including progenitor cell proliferation, maturation, and apoptosis of newly generated cells, were predominantly unaffected by chronic ileocolitis, except a potential minor phenotypic shift in maturating cells in 24-week-old mice. Together, we demonstrate largely preserved adult hippocampal neurogenesis, lacking signs of local inflammatory microglial activation despite chronic inflammation of the gut.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4409
2073-4409
DOI:10.3390/cells14110841