Inter‐Individual Variability in Insulin Response after Grape Pomace Supplementation in Subjects at High Cardiometabolic Risk: Role of Microbiota and miRNA
Scope Dietary polyphenols have shown promising effects in mechanistic and preclinical studies on the regulation of cardiometabolic alterations. Nevertheless, clinical trials have provided contradictory results, with high inter‐individual variability. This study explores the role of gut microbiota an...
Saved in:
Published in | Molecular nutrition & food research Vol. 65; no. 2; pp. e2000113 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-4125 1613-4133 1613-4133 |
DOI | 10.1002/mnfr.202000113 |
Cover
Summary: | Scope
Dietary polyphenols have shown promising effects in mechanistic and preclinical studies on the regulation of cardiometabolic alterations. Nevertheless, clinical trials have provided contradictory results, with high inter‐individual variability. This study explores the role of gut microbiota and microRNAs (miRNAs) as factors contributing to the inter‐individual variability in polyphenol response.
Methods and Results
49 subjects with at least two factors of metabolic syndrome are divided between responders (n = 23) or non‐responders (n = 26), depending on the variation rate in fasting insulin after grape pomace supplementation (6 weeks). The populations of selected fecal bacteria are estimated from fecal deoxyribonucleic acid (DNA) by quantitative real‐time polymerase chain reaction (qPCR), while the microbial‐derived short‐chain fatty acids (SCFAs) are measured in fecal samples by gas chromatography. MicroRNAs are analyzed on a representative sample, followed by targeted miRNA analysis. Responder subjects show significantly lower (p < 0.05) Prevotella and Firmicutes levels, and increased (p < 0.05) miR‐222 levels.
Conclusion
After evaluating the selected substrates for Prevotella and target genes of miR‐222, these variations suggest that responders are those subjects exhibiting impaired glycaemic control. This study shows that fecal microbiota and miRNA expression may be related to inter‐individual variability in clinical trials with polyphenols.
Subjects at high metabolic risk with
higher levels of plasma insulin concentration are sensitive to grape pomace
(Responders) while showing reduced levels of Firmicutes and Prevotella, along with increased expression of miR‐222.
The variations in miR‐222 as well as in Prevotella could be indicators of responsiveness, suggesting that responders are those subjects showing impaired glycaemic control. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ISSN: | 1613-4125 1613-4133 1613-4133 |
DOI: | 10.1002/mnfr.202000113 |