The cortex as a central pattern generator

Vertebrate spinal cord and brainstem central pattern generator (CPG) circuits share profound similarities with neocortical circuits. CPGs can produce meaningful functional output in the absence of sensory inputs. Neocortical circuits could be considered analogous to CPGs as they have rich spontaneou...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Neuroscience Vol. 6; no. 6; pp. 477 - 483
Main Authors Yuste, Rafael, MacLean, Jason N., Smith, Jeffrey, Lansner, Anders
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2005
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1471-003X
1471-0048
1471-0048
1469-3178
DOI10.1038/nrn1686

Cover

More Information
Summary:Vertebrate spinal cord and brainstem central pattern generator (CPG) circuits share profound similarities with neocortical circuits. CPGs can produce meaningful functional output in the absence of sensory inputs. Neocortical circuits could be considered analogous to CPGs as they have rich spontaneous dynamics that, similar to CPGs, are powerfully modulated or engaged by sensory inputs, but can also generate output in their absence. We find compelling evidence for this argument at the anatomical, biophysical, developmental, dynamic and pathological levels of analysis. Although it is possible that cortical circuits are particularly plastic types of CPG ('learning CPGs'), we argue that present knowledge about CPGs is likely to foretell the basic principles of the organization and dynamic function of cortical circuits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ISSN:1471-003X
1471-0048
1471-0048
1469-3178
DOI:10.1038/nrn1686