A Filtered Backprojection Algorithm for Triple-Source Helical Cone-Beam CT

Multisource cone-beam computed tomography (CT) is an attractive approach of choice for superior temporal resolution, which is critically important for cardiac imaging and contrast enhanced studies. In this paper, we present a filtered-backprojection (FBP) algorithm for triple-source helical cone-bea...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 28; no. 3; pp. 384 - 393
Main Authors Zhao, Jun, Jin, Yannan, Lu, Yang, Wang, Ge
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2008.2004817

Cover

More Information
Summary:Multisource cone-beam computed tomography (CT) is an attractive approach of choice for superior temporal resolution, which is critically important for cardiac imaging and contrast enhanced studies. In this paper, we present a filtered-backprojection (FBP) algorithm for triple-source helical cone-beam CT. The algorithm is both exact and efficient. It utilizes data from three inter-helix PI-arcs associated with the inter-helix PI-lines and the minimum detection windows defined for the triple-source configuration. The proof of the formula is based on the geometric relations specific to triple-source helical cone-beam scanning. Simulation results demonstrate the validity of the reconstruction algorithm. This algorithm is also extended to a multisource version for ( 2 N + 1 ) -source helical cone-beam CT. With parallel computing, the proposed FBP algorithms can be significantly faster than our previously published multisource backprojection-filtration algorithms. Thus, the FBP algorithms are promising in applications of triple-source helical cone-beam CT.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2008.2004817