Multimodal Sensor Motion Intention Recognition Based on Three-Dimensional Convolutional Neural Network Algorithm

With the development of microelectronic technology and computer systems, the research of motion intention recognition based on multimodal sensors has attracted the attention of the academic community. Deep learning and other nonlinear neural network models have a wide range of applications in big da...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 5690868
Main Authors Wen, Mofei, Wang, Yuwei
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2021/5690868

Cover

More Information
Summary:With the development of microelectronic technology and computer systems, the research of motion intention recognition based on multimodal sensors has attracted the attention of the academic community. Deep learning and other nonlinear neural network models have a wide range of applications in big data sets. We propose a motion intention recognition algorithm based on multimodal long-term and short-term spatiotemporal feature fusion. We divide the target data into multiple segments and use a three-dimensional convolutional neural network to extract the short-term spatiotemporal features. The three types of features of the same segment are fused together and input into the LSTM network for time-series modeling to further fuse the features to obtain multimodal long-term spatiotemporal features with higher discrimination. According to the lower limb movement pattern recognition model, the minimum number of muscles and EMG signal characteristics required to accurately recognize the movement state of the lower limbs are determined. This minimizes the redundant calculation cost of the model and ensures the real-time output of the system results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Syed Hassan Ahmed
ISSN:1687-5265
1687-5273
1687-5273
DOI:10.1155/2021/5690868