Individuality manifests in the dynamic reconfiguration of large-scale brain networks during movie viewing
Individuality, the uniqueness that distinguishes one person from another, may manifest as diverse rearrangements of functional connectivity during heterogeneous cognitive demands; yet, the neurobiological substrates of individuality, reflected in inter-individual variations of large-scale functional...
Saved in:
| Published in | Scientific reports Vol. 7; no. 1; p. 41414 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
23.01.2017
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/srep41414 |
Cover
| Summary: | Individuality, the uniqueness that distinguishes one person from another, may manifest as diverse rearrangements of functional connectivity during heterogeneous cognitive demands; yet, the neurobiological substrates of individuality, reflected in inter-individual variations of large-scale functional connectivity, have not been fully evidenced. Accordingly, we explored inter-individual variations of functional connectivity dynamics, subnetwork patterns and modular architecture while subjects watched identical video clips designed to induce different arousal levels. How inter-individual variations are manifested in the functional brain networks was examined with respect to four contrasting divisions: edges within the anterior
versus
posterior part of the brain, edges with
versus
without corresponding anatomically-defined structural pathways, inter-
versus
intra-module connections, and rich club edge types. Inter-subject variation in dynamic functional connectivity occurred to a greater degree within edges localized to anterior rather than posterior brain regions, without adhering to structural connectivity, between modules as opposed to within modules, and in weak-tie local edges rather than strong-tie rich-club edges. Arousal level significantly modulates inter-subject variability in functional connectivity, edge patterns, and modularity, and particularly enhances the synchrony of rich-club edges. These results imply that individuality resides in the dynamic reconfiguration of large-scale brain networks in response to a stream of cognitive demands. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/srep41414 |