Analysis of Landscape Ecological Planning Based on the High-Order Multiwavelet Neural Network Algorithm

Landscape architecture has both natural and social properties, which is the embodiment of people protecting the natural environment. Since the industrial revolution, the modern industry has developed rapidly. It has increased the living standard of people and consumed a lot of natural resources such...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 9420532
Main Authors Yu, ChuanDong, Du, Nan
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2021/9420532

Cover

More Information
Summary:Landscape architecture has both natural and social properties, which is the embodiment of people protecting the natural environment. Since the industrial revolution, the modern industry has developed rapidly. It has increased the living standard of people and consumed a lot of natural resources such as forest and energy. The ecological environment has been greatly damaged, and the landscape of gardens has been affected. Therefore, it is of great significance to find a method to evaluate the landscape ecology and plan the landscape ecology. This paper proposes a new high-order wavelet neural network algorithm combining wavelet analysis and artificial neural network. A model of ecological evaluation of landscape based on high-order wavelet neural network algorithm is proposed to evaluate the landscape ecology and provide reference data for the ecological planning of the landscape. The results show that the training times of the wavelet neural network to achieve the target accuracy are 3600 times less than those of the BP neural network. The MSE and MAE of the WNN are 0.0639 and 0.1501, respectively. The average error of the model to the comprehensive evaluation index of the landscape ecology is 0.005. The accuracy of the model to evaluate the sustainability of landscape land resources is 98.67%. The above results show that the model based on the wavelet neural network can effectively and accurately complete the evaluation of landscape ecology and then provide a decision-making basis for landscape ecological planning, which is of high practicability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Syed Hassan Ahmed
ISSN:1687-5265
1687-5273
1687-5273
DOI:10.1155/2021/9420532