Optimization of Human Motion Recognition Information Processing System Based on GA-BP Neural Network Algorithm

At present, there are some problems in the process of human motion recognition, such as poor timeliness and low fault tolerance rate. How to effectively identify the motion process accurately has become a hot spot in the optimization system. In the existing research studies, the recognition accuracy...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 1110503
Main Author Zhao, Shuwei
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2021/1110503

Cover

More Information
Summary:At present, there are some problems in the process of human motion recognition, such as poor timeliness and low fault tolerance rate. How to effectively identify the motion process accurately has become a hot spot in the optimization system. In the existing research studies, the recognition accuracy is not very good and the response time is long. To end this issue, the paper proposed an information processing system and optimization method of human motion recognition based on the GA-BP neural network algorithm. Firstly, a human motion recognition system based on dynamic capture recognition technology is designed, which realizes the recognition of motion information from common postures such as action span, speed change, motion trajectory, and other aspects in the process of human motion. Secondly, the proposed algorithm is used to comprehensively analyse and evaluate the motion state. Finally, experiments are designed to verify and analyse the results. Compared to some baseline methods in human motion recognition information systems, the system in this paper based on the GA-BP neural network algorithm has the advantages of higher data accuracy and response speed, which can quickly and accurately identify the muscle group change in the process of human motion, and it can also provide customized motion suggestions based on the results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Syed Hassan Ahmed
ISSN:1687-5265
1687-5273
1687-5273
DOI:10.1155/2021/1110503