Targeted transgene expression in neuronal precursors: watching young neurons in the old brain

Progress in the field of neurogenesis is limited by the lack of animal models allowing direct detection and analysis of living cells participating in neurogenesis. We engineered a transgenic mouse model that expresses the fluorescent reporter proteins enhanced green fluorescent protein or Discoma sp...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 24; no. 6; pp. 1535 - 1545
Main Authors Couillard-Despres, Sebastien, Winner, Beate, Karl, Claudia, Lindemann, Gudrun, Schmid, Peter, Aigner, Robert, Laemke, Joern, Bogdahn, Ulrich, Winkler, Juergen, Bischofberger, Josef, Aigner, Ludwig
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2006
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
DOI10.1111/j.1460-9568.2006.05039.x

Cover

More Information
Summary:Progress in the field of neurogenesis is limited by the lack of animal models allowing direct detection and analysis of living cells participating in neurogenesis. We engineered a transgenic mouse model that expresses the fluorescent reporter proteins enhanced green fluorescent protein or Discoma sp. reef coral red fluorescent protein under the control of the doublecortin (DCX) promoter, a gene specifically and transiently active in neuronal precursors and young neurons. The expression of the reporter proteins correlated with expression of the endogenous DCX protein, and with developmental and adult neurogenesis. Neurogenesis was unaffected by the presence of the fluorescent proteins. The transgenic mice allowed direct identification of the very few newly generated neurons present in the aged brain. We performed electrophysiological analysis and established that newly generated hippocampal granule cells in aged and young mice shared identical physiological properties. Hence, although the rate of neurogenesis tapers with ageing, a population of highly excitable young neurons indistinguishable to those found in younger animals is continuously generated. Therefore, maintenance of the fundamental properties of neuronal precursors even at advanced age suggests that stimulation of neurogenesis may constitute a valid strategy to counteract age‐related neuronal loss and cognitive declines.
Bibliography:ArticleID:EJN5039
ark:/67375/WNG-K9FMG3VR-Q
istex:E308E0E52AC5937F45D39B139BFBBF5E91D4C429
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0953-816X
1460-9568
DOI:10.1111/j.1460-9568.2006.05039.x