Aerobic Biodegradation of Chlorinated Hydrocarbons by Bacillus circulans WZ-12 CCTCC M 207006 under Saline Conditions

A novel saline-tolerant bacterium Bacillus circulans WZ-12 was evaluated for its potential to degrade four chlorinated hydrocarbons under saline conditions. CHECl2 was effectively degraded by Bacillus circulans WZ-12 cells in the medium containing NaCl concentrations ranging from 5 g.L^-1 to 10 g-L^...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 21; no. 7; pp. 781 - 786
Main Author 於建明 蔡文吉 赵士良 王艳 陈建孟
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2013
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(13)60536-4

Cover

More Information
Summary:A novel saline-tolerant bacterium Bacillus circulans WZ-12 was evaluated for its potential to degrade four chlorinated hydrocarbons under saline conditions. CHECl2 was effectively degraded by Bacillus circulans WZ-12 cells in the medium containing NaCl concentrations ranging from 5 g.L^-1 to 10 g-L^-1, and the maximum degradation efficiency (85%) was achieved at NaCl concentration of 10 g.L^-1. Similarly, Bacillus circulans WZ-12 was able to degrade CH2BrCl, C2H4Cl2, and C2H2Cl2 in the presence of 10 g NaCl per liter within 24 h. Cells of Bacillus circulans WZ-12 grown in minimal salt medium contained low levels of glycine betaine (GB), but GB levels were 3- to 5-fold higher in cells grown in media with high salt. Kinetic analysis revealed that biodegradation of the four chlorinated hydrocarbons was concentration dependent and a linear inverse correlation (R2= 0.85-0.94) was observed between the rate of biodegradation (V) and salt concentration from 5 g.L〈 to 60 g.L-1. The growing cells (in minimal salt medium) degraded approximately 50% of the CH2C12 within 24 h, whereas the resting cells (in physiological saline) degraded only 25% of the CH2C12 within 24 h and were inactive after 36 h cultivation. Biodegradation could be repeatedly performed for more than 192 h with more than 50% removal efficiency. Bacillus circulans WZ-12 grows well in an aqueous/oil system, hence, it is effective for the treatment of industriai efflu- ents that contain chlorinated hydrocarbons with high salt concentrations.
Bibliography:A novel saline-tolerant bacterium Bacillus circulans WZ-12 was evaluated for its potential to degrade four chlorinated hydrocarbons under saline conditions. CHECl2 was effectively degraded by Bacillus circulans WZ-12 cells in the medium containing NaCl concentrations ranging from 5 g.L^-1 to 10 g-L^-1, and the maximum degradation efficiency (85%) was achieved at NaCl concentration of 10 g.L^-1. Similarly, Bacillus circulans WZ-12 was able to degrade CH2BrCl, C2H4Cl2, and C2H2Cl2 in the presence of 10 g NaCl per liter within 24 h. Cells of Bacillus circulans WZ-12 grown in minimal salt medium contained low levels of glycine betaine (GB), but GB levels were 3- to 5-fold higher in cells grown in media with high salt. Kinetic analysis revealed that biodegradation of the four chlorinated hydrocarbons was concentration dependent and a linear inverse correlation (R2= 0.85-0.94) was observed between the rate of biodegradation (V) and salt concentration from 5 g.L〈 to 60 g.L-1. The growing cells (in minimal salt medium) degraded approximately 50% of the CH2C12 within 24 h, whereas the resting cells (in physiological saline) degraded only 25% of the CH2C12 within 24 h and were inactive after 36 h cultivation. Biodegradation could be repeatedly performed for more than 192 h with more than 50% removal efficiency. Bacillus circulans WZ-12 grows well in an aqueous/oil system, hence, it is effective for the treatment of industriai efflu- ents that contain chlorinated hydrocarbons with high salt concentrations.
chlorinated hydrocarbons, biodegradation, Bacillus circulans WZ-12, salinity
11-3270/TQ
YU Jianming, CAI Wenji, ZHAO Shiliang, WANG Yan, CHEN Jianmeng 1 College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China 2 College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1004-9541
2210-321X
DOI:10.1016/S1004-9541(13)60536-4