Retrospective on the First Passive Brain-Computer Interface Competition on Cross-Session Workload Estimation
As is the case in several research domains, data sharing is still scarce in the field of Brain-Computer Interfaces (BCI), and particularly in that of passive BCIs— i.e ., systems that enable implicit interaction or task adaptation based on a user's mental state(s) estimated from brain measures....
Saved in:
Published in | Frontiers in neuroergonomics Vol. 3; p. 838342 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media SA
04.04.2022
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 2673-6195 2673-6195 |
DOI | 10.3389/fnrgo.2022.838342 |
Cover
Summary: | As is the case in several research domains, data sharing is still scarce in the field of Brain-Computer Interfaces (BCI), and particularly in that of passive BCIs—
i.e
., systems that enable implicit interaction or task adaptation based on a user's mental state(s) estimated from brain measures. Moreover, research in this field is currently hindered by a major challenge, which is tackling brain signal variability such as cross-session variability. Hence, with a view to develop good research practices in this field and to enable the whole community to join forces in working on cross-session estimation, we created the first passive brain-computer interface competition on cross-session workload estimation. This competition was part of the 3rd International Neuroergonomics conference. The data were electroencephalographic recordings acquired from 15 volunteers (6 females; average 25 y.o.) who performed 3 sessions—separated by 7 days—of the Multi-Attribute Task Battery-II (MATB-II) with 3 levels of difficulty per session (pseudo-randomized order). The data -training and testing sets—were made publicly available on Zenodo along with Matlab and Python toy code (
https://doi.org/10.5281/zenodo.5055046
). To this day, the database was downloaded more than 900 times (unique downloads of all version on the 10th of December 2021: 911). Eleven teams from 3 continents (31 participants) submitted their work. The best achieving processing pipelines included a Riemannian geometry-based method. Although better than the adjusted chance level (38% with an α at 0.05 for a 3-class classification problem), the results still remained under 60% of accuracy. These results clearly underline the real challenge that is cross-session estimation. Moreover, they confirmed once more the robustness and effectiveness of Riemannian methods for BCI. On the contrary, chance level results were obtained by one third of the methods—4 teams- based on Deep Learning. These methods have not demonstrated superior results in this contest compared to traditional methods, which may be due to severe overfitting. Yet this competition is the first step toward a joint effort to tackle BCI variability and to promote good research practices including reproducibility. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Thorsten O. Zander, Brandenburg University of Technology Cottbus-Senftenberg, Germany This article was submitted to Neurotechnology and Systems Neuroergonomics, a section of the journal Frontiers in Neuroergonomics Reviewed by: Athanasios Vourvopoulos, Instituto Superior Técnico (ISR), Portugal; Hong Zeng, Hangzhou Dianzi University, China |
ISSN: | 2673-6195 2673-6195 |
DOI: | 10.3389/fnrgo.2022.838342 |