Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium

Microvascular endothelial cells at the blood–brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce funct...

Full description

Saved in:
Bibliographic Details
Published inJournal of cerebral blood flow and metabolism Vol. 37; no. 7; pp. 2614 - 2625
Main Authors Garcia-Polite, Fernando, Martorell, Jordi, Del Rey-Puech, Paula, Melgar-Lesmes, Pedro, O’Brien, Caroline C, Roquer, Jaume, Ois, Angel, Principe, Alessandro, Edelman, Elazer R, Balcells, Mercedes
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.07.2017
Subjects
Online AccessGet full text
ISSN0271-678X
1559-7016
1559-7016
DOI10.1177/0271678X16672482

Cover

Abstract Microvascular endothelial cells at the blood–brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10–20 dyn/cm2) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm2) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.
AbstractList Microvascular endothelial cells at the blood–brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10–20 dyn/cm2) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm2) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.
Microvascular endothelial cells at the blood-brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10-20 dyn/cm ) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm ) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.
Microvascular endothelial cells at the blood–brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10–20 dyn/cm 2 ) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm 2 ) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.
Microvascular endothelial cells at the blood–brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10–20 dyn/cm 2 ) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm 2 ) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.
Microvascular endothelial cells at the blood-brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10-20 dyn/cm2) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm2) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.Microvascular endothelial cells at the blood-brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10-20 dyn/cm2) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm2) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.
Author Garcia-Polite, Fernando
Roquer, Jaume
Ois, Angel
Balcells, Mercedes
Del Rey-Puech, Paula
Principe, Alessandro
O’Brien, Caroline C
Melgar-Lesmes, Pedro
Edelman, Elazer R
Martorell, Jordi
AuthorAffiliation 4 Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
5 Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
2 IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
1 Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
3 Servei de Neurologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
AuthorAffiliation_xml – name: 3 Servei de Neurologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
– name: 2 IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
– name: 5 Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
– name: 1 Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 4 Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
Author_xml – sequence: 1
  givenname: Fernando
  surname: Garcia-Polite
  fullname: Garcia-Polite, Fernando
– sequence: 2
  givenname: Jordi
  surname: Martorell
  fullname: Martorell, Jordi
  email: jordi.martorell@iqs.url.edu
– sequence: 3
  givenname: Paula
  surname: Del Rey-Puech
  fullname: Del Rey-Puech, Paula
– sequence: 4
  givenname: Pedro
  surname: Melgar-Lesmes
  fullname: Melgar-Lesmes, Pedro
– sequence: 5
  givenname: Caroline C
  surname: O’Brien
  fullname: O’Brien, Caroline C
– sequence: 6
  givenname: Jaume
  surname: Roquer
  fullname: Roquer, Jaume
– sequence: 7
  givenname: Angel
  surname: Ois
  fullname: Ois, Angel
– sequence: 8
  givenname: Alessandro
  surname: Principe
  fullname: Principe, Alessandro
– sequence: 9
  givenname: Elazer R
  surname: Edelman
  fullname: Edelman, Elazer R
– sequence: 10
  givenname: Mercedes
  surname: Balcells
  fullname: Balcells, Mercedes
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27702879$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LBCEYxyWK2l7uncJjlyl1UmcvQURvENShoJs4M8_sGI5u6izst89lKyqoix6e_4v-nl206bwDhA4pOaFUylPCJBWyeqFCSHZWsQ00oZxPC0mo2EST1bhYzXfQboyvhJCq5Hwb7TApCavkdILqx9FGnYw1aYm1a3FvZj2OPeiAYwoQI24hQTA-6AS41iEYCHjeg_NpOQdsHK6DzudgmuAXOjajzV5wrU89WDMO-2ir0zbCwce9h56vr54ub4v7h5u7y4v7ouGEpIJWEjrNmKw6SkoO-bFn5ZRNGQhOO0LaTkJDGKuE0KIG2jLeVkxQ0dZl_nRd7qHzde58rAdoG3ApaKvmwQw6LJXXRv2cONOrmV8ozkuaueSA44-A4N9GiEkNJjZgrXbgx6hoplcKIpnI0qPvXV8ln2CzQKwFGUqMATrVmJQ5-1W1sYoStdqg-r3BbCS_jJ_Z_1iKtSXqGahXPwaXOf-tfwdoJ6u-
CitedBy_id crossref_primary_10_1039_D2LC01109C
crossref_primary_10_1177_17562864241227304
crossref_primary_10_1161_HYPERTENSIONAHA_118_12048
crossref_primary_10_1088_1758_5090_ad867d
crossref_primary_10_1007_s11357_019_00063_5
crossref_primary_10_1177_0271678X20980652
crossref_primary_10_1186_s12868_022_00748_2
crossref_primary_10_1016_j_mvr_2021_104259
crossref_primary_10_1016_j_neurobiolaging_2021_05_002
crossref_primary_10_1016_j_stemcr_2019_01_009
crossref_primary_10_1111_joim_13392
crossref_primary_10_1007_s12975_023_01195_9
crossref_primary_10_3389_fcell_2023_1259280
crossref_primary_10_1161_ATVBAHA_121_316477
crossref_primary_10_1007_s10404_024_02741_z
crossref_primary_10_1002_anbr_202000068
crossref_primary_10_1016_j_actbio_2025_03_041
crossref_primary_10_1016_j_addr_2022_114183
crossref_primary_10_1038_s41582_021_00578_6
crossref_primary_10_1002_mrm_30370
crossref_primary_10_1002_adbi_202200152
crossref_primary_10_1016_j_bbadis_2022_166495
crossref_primary_10_1038_s41440_024_01764_x
crossref_primary_10_1038_s41551_024_01250_2
crossref_primary_10_3389_fbioe_2019_00172
crossref_primary_10_1093_ajh_hpaa001
crossref_primary_10_1186_s12987_018_0117_2
crossref_primary_10_3390_brainsci12101293
crossref_primary_10_1186_s12987_018_0097_2
crossref_primary_10_1002_btm2_10126
crossref_primary_10_3390_ijms241612699
crossref_primary_10_3389_fphys_2022_866792
crossref_primary_10_1002_advs_202205752
crossref_primary_10_1088_1758_5090_ab5898
crossref_primary_10_1152_physrev_00053_2021
crossref_primary_10_1002_cpsc_122
crossref_primary_10_1016_j_jconrel_2023_04_020
crossref_primary_10_1111_mmi_14852
crossref_primary_10_1161_ATVBAHA_120_311909
crossref_primary_10_1016_j_preteyeres_2022_101097
crossref_primary_10_1186_s12974_024_03321_2
crossref_primary_10_1016_j_bpj_2024_03_034
crossref_primary_10_1098_rsif_2022_0360
crossref_primary_10_1098_rsob_200396
crossref_primary_10_1038_s41580_024_00825_w
crossref_primary_10_1039_D3LC00996C
crossref_primary_10_1088_1361_6579_ad6acf
crossref_primary_10_3390_app11125584
crossref_primary_10_1002_adhm_202303180
crossref_primary_10_1002_adbi_202100775
crossref_primary_10_1016_j_thromres_2024_03_004
crossref_primary_10_1016_j_mvr_2019_103930
crossref_primary_10_1007_s00417_018_4179_2
crossref_primary_10_1038_s41598_020_60689_w
crossref_primary_10_3389_fimmu_2023_1196033
crossref_primary_10_1161_ATVBAHA_118_311342
crossref_primary_10_1177_0271678X18803956
crossref_primary_10_1186_s12974_023_02787_w
crossref_primary_10_1016_j_bbrc_2020_09_061
crossref_primary_10_3389_fnagi_2025_1536552
crossref_primary_10_1038_s41526_024_00348_w
crossref_primary_10_1016_j_xfss_2022_02_004
crossref_primary_10_1002_ana_26475
crossref_primary_10_1016_j_medntd_2022_100143
crossref_primary_10_3390_ijms23031477
crossref_primary_10_1038_s44222_024_00184_3
crossref_primary_10_1016_j_isci_2023_106661
crossref_primary_10_1016_j_compbiomed_2024_109148
crossref_primary_10_1039_D1LC00014D
crossref_primary_10_1007_s13760_024_02643_5
crossref_primary_10_1152_ajpheart_00637_2017
crossref_primary_10_1212_WNL_0000000000200109
crossref_primary_10_1152_ajpcell_00605_2023
crossref_primary_10_1113_JP287680
crossref_primary_10_1016_j_exer_2019_107751
crossref_primary_10_1186_s12987_022_00344_w
crossref_primary_10_3390_pharmaceutics16010048
crossref_primary_10_1002_bit_27719
crossref_primary_10_1016_j_mser_2019_100522
crossref_primary_10_1063_5_0150887
crossref_primary_10_3390_ijms26052105
crossref_primary_10_1113_JP283362
crossref_primary_10_1007_s10237_021_01519_4
crossref_primary_10_1016_j_molmed_2017_07_007
crossref_primary_10_1093_brain_awaa268
crossref_primary_10_1016_j_ooc_2023_100032
crossref_primary_10_1039_D2LC00657J
crossref_primary_10_1089_ten_teb_2023_0044
Cites_doi 10.3389/fneng.2013.00007
10.1186/2040-7378-5-4
10.1161/STROKEAHA.110.611731
10.1016/j.devcel.2012.07.015
10.1016/j.cardiores.2007.04.017
10.1186/1471-2202-14-18
10.1016/j.jacc.2006.12.050
10.1371/journal.pone.0061855
10.1016/j.mvr.2014.09.003
10.1161/01.ATV.18.2.227
10.1083/jcb.201404140
10.3892/ijmm.2014.1946
10.1161/HYPERTENSIONAHA.115.06398
10.1114/1.1385811
10.1161/01.STR.0000028235.91778.95
10.1161/HYPERTENSIONAHA.107.093674
10.1080/07853890802186921
10.1038/nmeth.2019
10.1093/cvr/cvu124
10.1046/j.1469-7580.2002.00064.x
10.1371/journal.pone.0033253
10.1186/1471-2202-12-40
10.1136/jnnp.2009.172072
10.1007/s11095-007-9374-5
10.1016/j.mehy.2014.02.022
10.1111/ijs.12434
10.1073/pnas.93.20.10779
10.1161/JAHA.113.000375
10.1038/jcbfm.2011.197
10.1016/j.bbamem.2007.08.018
10.1016/j.neuron.2013.10.008
10.1161/01.ATV.13.1.90
10.1161/01.STR.0000242289.20381.f4
10.1161/CIR.0000000000000350
10.1074/jbc.M700078200
10.1146/annurev-bioeng-071813-104908
10.1083/jcb.148.4.791
10.1016/j.nbd.2015.08.014
10.1038/nrn1387
10.1093/brain/awr253
10.1038/jcbfm.2015.102
10.1002/ana.21924
ContentType Journal Article
Copyright The Author(s) 2016
The Author(s) 2016 2016 International Society for Cerebral Blood Flow and Metabolism
Copyright_xml – notice: The Author(s) 2016
– notice: The Author(s) 2016 2016 International Society for Cerebral Blood Flow and Metabolism
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1177/0271678X16672482
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1559-7016
EndPage 2625
ExternalDocumentID PMC5531355
27702879
10_1177_0271678X16672482
10.1177_0271678X16672482
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM049039
GroupedDBID ---
-Q-
-TM
.55
.GJ
0R~
29K
2WC
36B
39C
3O-
4.4
53G
54M
5GY
5RE
5VS
70F
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AABMB
AACKU
AACMV
AADUE
AAEWN
AAGGD
AAGMC
AAJIQ
AAJPV
AAKGS
AANSI
AAPEO
AAQGT
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
AAVDI
AAXOT
AAYTG
AAZBJ
ABAWP
ABAWZ
ABCCA
ABCJG
ABDWY
ABEIX
ABFWQ
ABHKI
ABJNI
ABJZC
ABKRH
ABLUO
ABNCE
ABPGX
ABPNF
ABQKF
ABQNX
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ABXGC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFO
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLHI
ACNXM
ACOFE
ACOXC
ACPRK
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADEBD
ADEIA
ADMPF
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADZZY
AECGH
AENEX
AEPTA
AEQLS
AESZF
AEUHG
AEWDL
AEWHI
AEXFG
AEXNY
AFEET
AFFNX
AFFZS
AFKRA
AFKRG
AFMOU
AFOSN
AFQAA
AFUIA
AFVCE
AGHKR
AGKLV
AGNHF
AGPXR
AGWFA
AHDMH
AHMBA
AIGRN
AJABX
AJEFB
AJMMQ
AJSCY
AJUZI
AJXAJ
AJXGE
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
AOIJS
ARTOV
AUTPY
AYAKG
B8M
BAWUL
BBNVY
BBRGL
BDDNI
BENPR
BHPHI
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
C45
CAG
CBRKF
CCPQU
CDWPY
CFDXU
COF
CORYS
CQQTX
CS3
CUTAK
D-I
DC-
DC.
DIK
DOPDO
DV7
E3Z
EBS
EE.
EJD
EMOBN
F5P
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HCIFZ
HMCUK
HYE
HZ~
J8X
JSO
K.F
KQ8
LK8
M1P
M7P
O9-
OK1
OVD
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q1R
Q2X
RNS
RNTTT
ROL
RPM
SASJQ
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
TR2
UKHRP
W2D
X7M
YFH
YOC
ZGI
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZXP
AAYXX
AJGYC
CITATION
AAEJI
AAPII
AJVBE
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
AJHME
5PM
ID FETCH-LOGICAL-c500t-187efa2278f1035e008439292e651f00df7ec022866a6be1d25d82616db3155b3
ISSN 0271-678X
1559-7016
IngestDate Thu Aug 21 18:28:01 EDT 2025
Thu Sep 04 21:58:00 EDT 2025
Mon Jul 21 06:05:48 EDT 2025
Thu Apr 24 22:53:50 EDT 2025
Tue Jul 01 05:26:20 EDT 2025
Tue Jun 17 22:31:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords cerebrovascular disease
capillaries
vascular biology
microcirculation
hemodynamics
Blood–brain barrier
neurovascular unit
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c500t-187efa2278f1035e008439292e651f00df7ec022866a6be1d25d82616db3155b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/0271678X16672482
PMID 27702879
PQID 1835360726
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5531355
proquest_miscellaneous_1835360726
pubmed_primary_27702879
crossref_citationtrail_10_1177_0271678X16672482
crossref_primary_10_1177_0271678X16672482
sage_journals_10_1177_0271678X16672482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: United States
– name: Sage UK: London, England
PublicationTitle Journal of cerebral blood flow and metabolism
PublicationTitleAlternate J Cereb Blood Flow Metab
PublicationYear 2017
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Cucullo, Hossain, Puvenna 2011; 12
Tarbell, Simon, Curry 2014; 16
Gottardi, Arpin, Fanning 1996; 93
Iadecola 2013; 80
Nakagawa, Hasegawa, Uekawa 2013; 2
Benetos, Laurent, Hoeks 1993; 13
Iadecola 2004; 5
Li, Mrsny 2000; 148
Schreiber, Bueche, Garz 2013; 5
Abbott 2002; 200
Tornavaca, Chia, Dufton 2015; 208
Waldstein, Rice, Thayer 2008; 51
Ohtsuki, Terasaki 2007; 24
O’Rourke, Hashimoto 2007; 50
Forster, Thumser, Hood 2012; 7
Bai, Xu, Xu 2014; 34
Wong, Ye, Levy 2013; 6
Jung, Obinata, Galvani 2012; 23
Topakian, Barrick, Howe 2010; 81
Di Marco, Venneri, Farkas 2015; 82
Singer, Trollor, Crawford 2013; 8
Mitchell, van Buchem, Sigurdsson 2011; 134
Taheri, Gasparovic, Huisa 2011; 42
Marra, Vargas, Striano 2014; 82
Schindelin, Arganda-Carreras, Frise 2012; 9
Chiu, Usami, Chien 2009; 41
González-Mariscal, Tapia, Chamorro 2008; 1778
Martorell, Santomá, Kolandaivelu 2014; 103
Seebach, Donnert, Kronstein 2007; 75
Bai, Lyden 2015; 10
Cooper, Woodard, Sigurdsson 2016; 67
Hamik, Lin, Kumar 2007; 282
Liu, Ander, Xu 2010; 67
Desmond, Moroney, Sano 2002; 33
DePaola, Phelps, Florez 2001; 29
Hirata, Yaginuma, O’Rourke 2006; 37
Cucullo, Hossain, Tierney 2013; 14
Rosenberg 2012; 32
Rochfort, Cummins 2014; 97
Jalali, Li, Sotoudeh 1998; 18
Rochfort, Collins, McLoughlin 2015; 35
bibr15-0271678X16672482
bibr32-0271678X16672482
bibr7-0271678X16672482
bibr31-0271678X16672482
bibr36-0271678X16672482
bibr1-0271678X16672482
bibr23-0271678X16672482
bibr14-0271678X16672482
bibr29-0271678X16672482
bibr10-0271678X16672482
bibr40-0271678X16672482
bibr27-0271678X16672482
bibr41-0271678X16672482
bibr16-0271678X16672482
bibr19-0271678X16672482
bibr20-0271678X16672482
bibr33-0271678X16672482
bibr24-0271678X16672482
bibr2-0271678X16672482
bibr37-0271678X16672482
bibr28-0271678X16672482
bibr6-0271678X16672482
bibr11-0271678X16672482
bibr4-0271678X16672482
bibr34-0271678X16672482
bibr9-0271678X16672482
bibr21-0271678X16672482
bibr39-0271678X16672482
bibr12-0271678X16672482
bibr18-0271678X16672482
bibr38-0271678X16672482
bibr42-0271678X16672482
bibr3-0271678X16672482
bibr25-0271678X16672482
bibr5-0271678X16672482
bibr22-0271678X16672482
bibr30-0271678X16672482
bibr35-0271678X16672482
bibr17-0271678X16672482
bibr26-0271678X16672482
bibr8-0271678X16672482
bibr13-0271678X16672482
References_xml – volume: 103
  start-page: 37
  year: 2014
  end-page: 46
  article-title: Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations
  publication-title: Cardiovasc Res
– volume: 12
  start-page: 40
  year: 2011
  article-title: The role of shear stress in Blood-Brain Barrier endothelial physiology
  publication-title: BMC Neurosci
– volume: 75
  start-page: 596
  year: 2007
  end-page: 607
  article-title: Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype
  publication-title: Cardiovasc Res
– volume: 13
  start-page: 90
  year: 1993
  end-page: 97
  article-title: Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 82
  start-page: 619
  year: 2014
  end-page: 622
  article-title: Posterior reversible encephalopathy syndrome: The endothelial hypotheses
  publication-title: Med Hypotheses
– volume: 1778
  start-page: 729
  year: 2008
  end-page: 756
  article-title: Crosstalk of tight junction components with signaling pathways
  publication-title: Biochim Biophys Acta
– volume: 7
  start-page: e33253
  year: 2012
  article-title: Characterization of Rhodamine-123 as a tracer dye for use in in vitro drug transport assays
  publication-title: PLoS One
– volume: 6
  start-page: 7
  year: 2013
  article-title: The blood-brain barrier: An engineering perspective
  publication-title: Front Neuroeng
– volume: 134
  start-page: 3398
  year: 2011
  end-page: 3407
  article-title: Arterial stiffness, pressure and flow pulsatility and brain structure and function: The age, gene/environment susceptibility - Reykjavik study
  publication-title: Brain
– volume: 67
  start-page: 176
  year: 2016
  end-page: 182
  article-title: Cerebrovascular damage mediates relations between aortic stiffness and memory
  publication-title: Hypertension
– volume: 23
  start-page: 600
  year: 2012
  end-page: 610
  article-title: Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development
  publication-title: Dev Cell
– volume: 37
  start-page: 2552
  year: 2006
  end-page: 2556
  article-title: Age-related changes in carotid artery flow and pressure pulses: Possible implications for cerebral microvascular disease
  publication-title: Stroke
– volume: 208
  start-page: 821
  year: 2015
  end-page: 838
  article-title: ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation
  publication-title: J Cell Biol
– volume: 8
  start-page: 4
  year: 2013
  end-page: 9
  article-title: The association between pulse wave velocity and cognitive function: The Sydney memory and ageing study
  publication-title: PLoS One
– volume: 18
  start-page: 227
  year: 1998
  end-page: 234
  article-title: Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 10
  start-page: 143
  year: 2015
  end-page: 152
  article-title: Revisiting cerebral postischemic reperfusion injury: New insights in understanding reperfusion failure, hemorrhage, and edema
  publication-title: Int J Stroke
– volume: 81
  start-page: 192
  year: 2010
  end-page: 197
  article-title: Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 93
  start-page: 10779
  year: 1996
  end-page: 10784
  article-title: The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 648
  year: 2001
  end-page: 656
  article-title: Electrical impedance of cultured endothelium under fluid flow
  publication-title: Ann Biomed Eng
– volume: 5
  start-page: 347
  year: 2004
  end-page: 360
  article-title: Neurovascular regulation in the normal brain and in Alzheimer’s disease
  publication-title: Nat Rev Neurosci
– volume: 148
  start-page: 791
  year: 2000
  end-page: 800
  article-title: Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin
  publication-title: J Cell Biol
– volume: 67
  start-page: 526
  year: 2010
  end-page: 533
  article-title: Blood-brain barrier breakdown and repair by Src after thrombin-induced injury
  publication-title: Ann Neurol
– volume: 14
  start-page: 18
  year: 2013
  article-title: A new dynamic in vitro modular capillaries-venules modular system: Cerebrovascular physiology in a box
  publication-title: BMC Neurosci
– volume: 80
  start-page: 844
  year: 2013
  end-page: 866
  article-title: The pathobiology of vascular dementia
  publication-title: Neuron
– volume: 32
  start-page: 1139
  year: 2012
  end-page: 1151
  article-title: Neurological diseases in relation to the blood–brain barrier
  publication-title: J Cereb Blood Flow Metab
– volume: 33
  start-page: 2254
  year: 2002
  end-page: 2260
  article-title: Incidence of dementia after ischemic stroke: Results of a longitudinal study
  publication-title: Stroke
– volume: 82
  start-page: 593
  year: 2015
  end-page: 606
  article-title: Vascular dysfunction in the pathogenesis of Alzheimer’s disease — A review of endothelium-mediated mechanisms and ensuing vicious circles
  publication-title: Neurobiol Dis
– volume: 34
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Inhibition of Src phosphorylation reduces damage to the blood-brain barrier following transient focal cerebral ischemia in rats
  publication-title: Int J Mol Med
– volume: 16
  start-page: 505
  year: 2014
  end-page: 532
  article-title: Mechanosensing at the vascular interface
  publication-title: Annu Rev Biomed Eng
– volume: 5
  start-page: 4
  year: 2013
  article-title: Blood brain barrier breakdown as the starting point of cerebral small vessel disease? - New insights from a rat model
  publication-title: Exp Transl Stroke Med
– volume: 282
  start-page: 13769
  year: 2007
  end-page: 13779
  article-title: Kruppel-like factor 4 regulates endothelial inflammation
  publication-title: J Biol Chem
– volume: 200
  start-page: 629
  year: 2002
  end-page: 638
  article-title: Astrocyte-endothelial interactions and blood-brain barrier permeability
  publication-title: J Anat
– volume: 41
  start-page: 19
  year: 2009
  end-page: 28
  article-title: Vascular endothelial responses to altered shear stress: Pathologic implications for atherosclerosis
  publication-title: Ann Med
– volume: 97
  start-page: 1
  year: 2014
  end-page: 5
  article-title: Thrombomodulin regulation in human brain microvascular endothelial cells in vitro: Role of cytokines and shear stress
  publication-title: Microvasc Res
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: Fiji: An open-source platform for biological-image analysis
  publication-title: Nat Methods
– volume: 24
  start-page: 1745
  year: 2007
  end-page: 1758
  article-title: Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development
  publication-title: Pharm Res
– volume: 50
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Mechanical factors in arterial aging: A clinical perspective
  publication-title: J Am Coll Cardiol
– volume: 51
  start-page: 99
  year: 2008
  end-page: 104
  article-title: Pulse pressure and cognitive decline pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore longitudinal study of aging
  publication-title: Hypertension
– volume: 2
  start-page: e000375–e000375
  year: 2013
  article-title: Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats
  publication-title: J Am Heart Assoc
– volume: 35
  start-page: 1648
  year: 2015
  end-page: 1656
  article-title: Shear-dependent attenuation of cellular ROS levels can suppress proinflammatory cytokine injury to human brain microvascular endothelial barrier properties
  publication-title: J Cereb Blood Flow Metab
– volume: 42
  start-page: 2158
  year: 2011
  end-page: 2163
  article-title: Blood-brain barrier permeability abnormalities in vascular cognitive impairment
  publication-title: Stroke
– ident: bibr18-0271678X16672482
  doi: 10.3389/fneng.2013.00007
– ident: bibr13-0271678X16672482
  doi: 10.1186/2040-7378-5-4
– ident: bibr29-0271678X16672482
  doi: 10.1161/STROKEAHA.110.611731
– ident: bibr33-0271678X16672482
  doi: 10.1016/j.devcel.2012.07.015
– ident: bibr40-0271678X16672482
  doi: 10.1016/j.cardiores.2007.04.017
– ident: bibr17-0271678X16672482
  doi: 10.1186/1471-2202-14-18
– ident: bibr4-0271678X16672482
  doi: 10.1016/j.jacc.2006.12.050
– ident: bibr7-0271678X16672482
  doi: 10.1371/journal.pone.0061855
– ident: bibr28-0271678X16672482
  doi: 10.1016/j.mvr.2014.09.003
– ident: bibr34-0271678X16672482
  doi: 10.1161/01.ATV.18.2.227
– ident: bibr41-0271678X16672482
  doi: 10.1083/jcb.201404140
– ident: bibr36-0271678X16672482
  doi: 10.3892/ijmm.2014.1946
– ident: bibr5-0271678X16672482
  doi: 10.1161/HYPERTENSIONAHA.115.06398
– ident: bibr39-0271678X16672482
  doi: 10.1114/1.1385811
– ident: bibr2-0271678X16672482
  doi: 10.1161/01.STR.0000028235.91778.95
– ident: bibr8-0271678X16672482
  doi: 10.1161/HYPERTENSIONAHA.107.093674
– ident: bibr26-0271678X16672482
  doi: 10.1080/07853890802186921
– ident: bibr21-0271678X16672482
  doi: 10.1038/nmeth.2019
– ident: bibr24-0271678X16672482
  doi: 10.1093/cvr/cvu124
– ident: bibr9-0271678X16672482
  doi: 10.1046/j.1469-7580.2002.00064.x
– ident: bibr22-0271678X16672482
  doi: 10.1371/journal.pone.0033253
– ident: bibr19-0271678X16672482
  doi: 10.1186/1471-2202-12-40
– ident: bibr14-0271678X16672482
  doi: 10.1136/jnnp.2009.172072
– ident: bibr10-0271678X16672482
  doi: 10.1007/s11095-007-9374-5
– ident: bibr12-0271678X16672482
  doi: 10.1016/j.mehy.2014.02.022
– ident: bibr11-0271678X16672482
  doi: 10.1111/ijs.12434
– ident: bibr31-0271678X16672482
  doi: 10.1073/pnas.93.20.10779
– ident: bibr42-0271678X16672482
  doi: 10.1161/JAHA.113.000375
– ident: bibr30-0271678X16672482
  doi: 10.1038/jcbfm.2011.197
– ident: bibr38-0271678X16672482
  doi: 10.1016/j.bbamem.2007.08.018
– ident: bibr16-0271678X16672482
  doi: 10.1016/j.neuron.2013.10.008
– ident: bibr20-0271678X16672482
  doi: 10.1161/01.ATV.13.1.90
– ident: bibr3-0271678X16672482
  doi: 10.1161/01.STR.0000242289.20381.f4
– ident: bibr1-0271678X16672482
  doi: 10.1161/CIR.0000000000000350
– ident: bibr25-0271678X16672482
  doi: 10.1074/jbc.M700078200
– ident: bibr32-0271678X16672482
  doi: 10.1146/annurev-bioeng-071813-104908
– ident: bibr37-0271678X16672482
  doi: 10.1083/jcb.148.4.791
– ident: bibr15-0271678X16672482
  doi: 10.1016/j.nbd.2015.08.014
– ident: bibr23-0271678X16672482
  doi: 10.1038/nrn1387
– ident: bibr6-0271678X16672482
  doi: 10.1093/brain/awr253
– ident: bibr27-0271678X16672482
  doi: 10.1038/jcbfm.2015.102
– ident: bibr35-0271678X16672482
  doi: 10.1002/ana.21924
SSID ssj0008355
Score 2.5315025
Snippet Microvascular endothelial cells at the blood–brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli....
Microvascular endothelial cells at the blood-brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli....
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2614
SubjectTerms Biomechanical Phenomena
Blood-Brain Barrier - metabolism
Blood-Brain Barrier - ultrastructure
Capillary Permeability
Cell Culture Techniques
Cells, Cultured
Claudin-5 - genetics
Claudin-5 - metabolism
Culture Media, Conditioned
Down-Regulation
Endothelial Cells - metabolism
Endothelial Cells - ultrastructure
Endothelium, Vascular - metabolism
Endothelium, Vascular - ultrastructure
Humans
Microscopy, Fluorescence
Microvessels - metabolism
Microvessels - ultrastructure
Models, Biological
Original
Pulsatile Flow
Shear Strength
Stress, Mechanical
Tight Junctions - metabolism
Tight Junctions - ultrastructure
Zonula Occludens-1 Protein - genetics
Zonula Occludens-1 Protein - metabolism
Title Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium
URI https://journals.sagepub.com/doi/full/10.1177/0271678X16672482
https://www.ncbi.nlm.nih.gov/pubmed/27702879
https://www.proquest.com/docview/1835360726
https://pubmed.ncbi.nlm.nih.gov/PMC5531355
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGeIAXBBs_yi8ZCU1ClVmcJnb7OE2gCTHUh03qW2THjqiUJqhNH8bfxx_Gne2kaTvQ4CWqWjdJc1995_N33xHyfjJOE2lzznRiBEvyVLBJpDjLxcgWYy1NZDChf_lNXFwnX2bp7ODgV4-1tG70x_znrXUl_2NVeA_silWy_2DZ7qTwBrwG-8IRLAzHO9l4ui6RjOMiaUyAo_bwcIU9qtsaEINsF6zCb-xQq6VrT4esrtqlXufVUGOLiOECaXkdKdVWBuuyynmQadiPXXO7xA3n0vPeh0VZe2LxwjYAqrKVJUReD_YqUszR7DyT2Ceu600qfAnL_pZrA0vheRdbW9T9v2HTtc07FmPnRS4tFqGwr3YVSiqm1izrfhKDy47w2t89uz1PGUvOwKPOvMMKs3Q6YTLyRZrtNO61YwJcZX9OFr5MNfj3WPhK633f4Xav8Xp4OS6EjBPfGGlHkTsMznaH3iP3YwkRHJaczzZEI4hxHZG2_SGbzfLT3TNsB0d7K5594m6PfegCoqvH5FFAAz3zsHxCDmx1RI7PKtXUixt6Qh232G3aHJEH521fwWOie6ilgASKqKUOtdSjlvZQSwNqaYdaOq-oQy3dQi3tofYpuf786er8goVOHyxPo6hhfCxtobAqu-DRKLXY5QED99iKlBdRZAqYT1CpSQgltOUmTg2si7kwegRg0KNn5LCqK_uCUGOSIi9koVFqMi4mSks1ElEeFyqSKrcDcto-4iwPMvjYjaXMeKt8v2OUAfnQfeOHl4D5y9h3rdUyeKy4-aYqW69XGbjOFO5DxmJAnnsrdmeLpYQwX04GRG7ZtxuAGvDbn1Tz704LPgUfCvgakBNEQhYmp9Ufb_DlXQe-Ig83f9TX5LBZru0biL8b_dbB-zdQb9nh
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsatility+and+high+shear+stress+deteriorate+barrier+phenotype+in+brain+microvascular+endothelium&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Garcia-Polite%2C+Fernando&rft.au=Martorell%2C+Jordi&rft.au=Del+Rey-Puech%2C+Paula&rft.au=Melgar-Lesmes%2C+Pedro&rft.date=2017-07-01&rft.pub=SAGE+Publications&rft.issn=0271-678X&rft.eissn=1559-7016&rft.volume=37&rft.issue=7&rft.spage=2614&rft.epage=2625&rft_id=info:doi/10.1177%2F0271678X16672482&rft.externalDocID=10.1177_0271678X16672482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon