Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium

Microvascular endothelial cells at the blood–brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce funct...

Full description

Saved in:
Bibliographic Details
Published inJournal of cerebral blood flow and metabolism Vol. 37; no. 7; pp. 2614 - 2625
Main Authors Garcia-Polite, Fernando, Martorell, Jordi, Del Rey-Puech, Paula, Melgar-Lesmes, Pedro, O’Brien, Caroline C, Roquer, Jaume, Ois, Angel, Principe, Alessandro, Edelman, Elazer R, Balcells, Mercedes
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.07.2017
Subjects
Online AccessGet full text
ISSN0271-678X
1559-7016
1559-7016
DOI10.1177/0271678X16672482

Cover

More Information
Summary:Microvascular endothelial cells at the blood–brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10–20 dyn/cm2) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm2) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0271-678X
1559-7016
1559-7016
DOI:10.1177/0271678X16672482