Image Encryption Algorithm Based on an Improved Tent Map and Dynamic DNA Coding

As multimedia technologies evolve, digital images have become increasingly prevalent across various fields, highlighting an urgent demand for robust image privacy and security mechanisms. However, existing image encryption algorithms (IEAs) still face limitations in balancing strong security, real-t...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 27; no. 8; p. 796
Main Authors Zhou, Wei, Li, Xianwei, Xin, Zhenghua
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.07.2025
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e27080796

Cover

More Information
Summary:As multimedia technologies evolve, digital images have become increasingly prevalent across various fields, highlighting an urgent demand for robust image privacy and security mechanisms. However, existing image encryption algorithms (IEAs) still face limitations in balancing strong security, real-time performance, and computational efficiency. Therefore, we proposes a new IEA that integrates an improved chaotic map (Tent map), an improved Zigzag transform, and dynamic DNA coding. Firstly, a pseudo-wavelet transform (PWT) is applied to plain images to produce four sub-images I1, I2, I3, and I4. Secondly, the improved Zigzag transform and its three variants are used to rearrange the sub-image I1, and then the scrambled sub-image is diffused using XOR operation. Thirdly, an inverse pseudo-wavelet transform (IPWT) is employed on the four sub-images to reconstruct the image, and then the reconstructed image is encoded into a DNA sequence utilizing dynamic DNA encoding. Finally, the DNA sequence is scrambled and diffused employing DNA-level index scrambling and dynamic DNA operations. The experimental results and performance evaluations, including chaotic performance evaluation and comprehensive security analysis, demonstrate that our IEA achieves high key sensitivity, low correlation, excellent entropy, and strong resistance to common attacks. This highlights its potential for deployment in real-time, high-security image cryptosystems, especially in fields such as medical image security and social media privacy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e27080796