Smart Watch Sensors for Tremor Assessment in Parkinson’s Disease—Algorithm Development and Measurement Properties Analysis
Parkinson’s disease (PD) is a neurodegenerative disorder commonly marked by upper limb tremors that interfere with daily activities. Wearable devices, such as smartwatches, represent a promising solution for continuous and objective monitoring in PD. This study aimed to develop and validate a tremor...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 14; p. 4313 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
10.07.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25144313 |
Cover
| Summary: | Parkinson’s disease (PD) is a neurodegenerative disorder commonly marked by upper limb tremors that interfere with daily activities. Wearable devices, such as smartwatches, represent a promising solution for continuous and objective monitoring in PD. This study aimed to develop and validate a tremor-detection algorithm using smartwatch sensors. Data were collected from 21 individuals with PD and 27 healthy controls using both a commercial inertial measurement unit (G-Sensor, BTS Bioengineering, Italy) and a smartwatch (Apple Watch Series 3). Participants performed standardized arm movements while sensor signals were synchronized and processed to extract relevant features. Statistical analyses assessed discriminant and concurrent validity, reliability, and accuracy. The algorithm demonstrated moderate to strong correlations between smartwatch and commercial IMU data, effectively distinguishing individuals with PD from healthy controls showing associations with clinical measures, such as the MDS-UPDRS III. Reliability analysis demonstrated agreement between repeated measurements, although a proportional bias was noted. Power spectral density (PSD) analysis of accelerometer and gyroscope data along the x-axis successfully detected the presence of tremors. These findings support the use of smartwatches as a tool for detecting tremors in PD. However, further studies involving larger and more clinically impaired samples are needed to confirm the robustness and generalizability of these results. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s25144313 |