Genetic-based EM algorithm for learning Gaussian mixture models

We propose a genetic-based expectation-maximization (GA-EM) algorithm for learning Gaussian mixture models from multivariate data. This algorithm is capable of selecting the number of components of the model using the minimum description length (MDL) criterion. Our approach benefits from the propert...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 27; no. 8; pp. 1344 - 1348
Main Authors Pernkopf, F., Bouchaffra, D.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.08.2005
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
DOI10.1109/TPAMI.2005.162

Cover

More Information
Summary:We propose a genetic-based expectation-maximization (GA-EM) algorithm for learning Gaussian mixture models from multivariate data. This algorithm is capable of selecting the number of components of the model using the minimum description length (MDL) criterion. Our approach benefits from the properties of genetic algorithms (GA) and the EM algorithm by combination of both into a single procedure. The population-based stochastic search of the GA explores the search space more thoroughly than the EM method. Therefore, our algorithm enables escaping from local optimal solutions since the algorithm becomes less sensitive to its initialization. The GA-EM algorithm is elitist which maintains the monotonic convergence property of the EM algorithm. The experiments on simulated and real data show that the GA-EM outperforms the EM method since: (1) we have obtained a better MDL score while using exactly the same termination condition for both algorithms; (2) our approach identifies the number of components which were used to generate the underlying data more often than the EM algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2005.162