PET-CT image registration in the chest using free-form deformations

We have implemented and validated an algorithm for three-dimensional positron emission tomography transmission-to-computed tomography registration in the chest, using mutual information as a similarity criterion. Inherent differences in the two imaging protocols produce significant nonrigid motion b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 22; no. 1; pp. 120 - 128
Main Authors Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
DOI10.1109/TMI.2003.809072

Cover

More Information
Summary:We have implemented and validated an algorithm for three-dimensional positron emission tomography transmission-to-computed tomography registration in the chest, using mutual information as a similarity criterion. Inherent differences in the two imaging protocols produce significant nonrigid motion between the two acquisitions. A rigid body deformation combined with localized cubic B-splines is used to capture this motion. The deformation is defined on a regular grid and is parameterized by potentially several thousand coefficients. Together with a spline-based continuous representation of images and Parzen histogram estimates, our deformation model allows closed-form expressions for the criterion and its gradient. A limited-memory quasi-Newton optimization algorithm is used in a hierarchical multiresolution framework to automatically align the images. To characterize the performance of the method, 27 scans from patients involved in routine lung cancer staging were used in a validation study. The registrations were assessed visually by two expert observers in specific anatomic locations using a split window validation technique. The visually reported errors are in the 0- to 6-mm range and the average computation time is 100 min on a moderate-performance workstation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2003.809072