Combined Diagnostic Accuracy of Diffusion and Perfusion MR Imaging to Differentiate Radiation-Induced Necrosis from Recurrence in Glioblastoma

We aimed to use quantitative values derived from perfusion and diffusion-weighted MR imaging (PWI and DWI) to differentiate radiation-induced necrosis (RIN) from tumor recurrence in Glioblastoma (GBM) and investigate the best parameters for improved diagnostic accuracy and clinical decision-making....

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 12; no. 3; p. 718
Main Authors Jajodia, Ankush, Goel, Varun, Goyal, Jitin, Patnaik, Nivedita, Khoda, Jeevitesh, Pasricha, Sunil, Gairola, Munish
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.03.2022
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics12030718

Cover

More Information
Summary:We aimed to use quantitative values derived from perfusion and diffusion-weighted MR imaging (PWI and DWI) to differentiate radiation-induced necrosis (RIN) from tumor recurrence in Glioblastoma (GBM) and investigate the best parameters for improved diagnostic accuracy and clinical decision-making. Methods: A retrospective analysis of follow-up MRI with new enhancing observations was performed in histopathologically confirmed subjects of post-treated GBM, who underwent re-surgical exploration. Quantitative estimation of rCBV (relative cerebral blood volume) from PWI and three methods of apparent diffusion coefficient (ADC) estimation were performed, namely ADC R1 (whole cross-sectional area of tumor), ADC R2 (only solid enhancing lesion), and ADC R3 (central necrosis). ROC curve and logistic regression analysis was completed. A confusion matrix table created using Excel provided the best combination parameters to ameliorate false-positive and false-negative results. Results: Forty-four subjects with a mean age of 46 years (range, 19–70 years) underwent re-surgical exploration with RIN in 28 (67%) and recurrent tumor in 16 (33%) on histopathology. rCBV threshold of >3.4 had the best diagnostic accuracy (AUC = 0.93, 81% sensitivity and 89% specificity). A multiple logistic regression model showed significant contributions from rCBV (p < 0.001) and ADC R3 (p = 0.001). After analysis of confusion matrix ADC R3 > 2032 × 10−6 mm2 achieved 100% specificity with gain in sensitivity (94% vs. 56%). Conclusions: A combination of parameters had better diagnostic performance, and a stepwise combination of rCBV and ADC R3 obviated unnecessary biopsies in 10% (3/28), leading to improved clinical decision-making.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics12030718