A Linear Kalman Filter for MARG Orientation Estimation Using the Algebraic Quaternion Algorithm

Real-time orientation estimation using low-cost inertial sensors is essential for all the applications where size and power consumption are critical constraints. Such applications include robotics, human motion analysis, and mobile devices. This paper presents a linear Kalman filter for magnetic ang...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 65; no. 2; pp. 467 - 481
Main Authors Valenti, Roberto G., Dryanovski, Ivan, Xiao, Jizhong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2015.2498998

Cover

More Information
Summary:Real-time orientation estimation using low-cost inertial sensors is essential for all the applications where size and power consumption are critical constraints. Such applications include robotics, human motion analysis, and mobile devices. This paper presents a linear Kalman filter for magnetic angular rate and gravity sensors that processes angular rate, acceleration, and magnetic field data to obtain an estimation of the orientation in quaternion representation. Acceleration and magnetic field observations are preprocessed through a novel external algorithm, which computes the quaternion orientation as the composition of two algebraic quaternions. The decoupled nature of the two quaternions makes the roll and pitch components of the orientation immune to magnetic disturbances. The external algorithm reduces the complexity of the filter, making the measurement equations linear. Real-time implementation and the test results of the Kalman filter are presented and compared against a typical quaternion-based extended Kalman filter and a constant gain filter based on the gradient-descent algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2015.2498998