A Novel Real-Time Threshold Algorithm for Closed-Loop Epilepsy Detection and Stimulation System

Epilepsy, as a common brain disease, causes great pain and stress to patients around the world. At present, the main treatment methods are drug, surgical, and electrical stimulation therapies. Electrical stimulation has recently emerged as an alternative treatment for reducing symptomatic seizures....

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 1; p. 33
Main Authors Wang, Liang-Hung, Zhang, Zhen-Nan, Xie, Chao-Xin, Jiang, Hao, Yang, Tao, Ran, Qi-Peng, Fan, Ming-Hui, Kuo, I-Chun, Lee, Zne-Jung, Chen, Jian-Bo, Chen, Tsung-Yi, Chen, Shih-Lun, Abu, Patricia Angela R.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25010033

Cover

More Information
Summary:Epilepsy, as a common brain disease, causes great pain and stress to patients around the world. At present, the main treatment methods are drug, surgical, and electrical stimulation therapies. Electrical stimulation has recently emerged as an alternative treatment for reducing symptomatic seizures. This study proposes a novel closed-loop epilepsy detection system and stimulation control chip. A time-domain detection algorithm based on amplitude, slope, line length, and signal energy characteristics is introduced. A new threshold calculation method is proposed; that is, the threshold is updated by means of the mean and standard deviation of four consecutive eigenvalues through parameter combination. Once a seizure is detected, the system begins to control the stimulation of a two-phase pulse current with an amplitude and frequency of 34 μA and 200 Hz, respectively. The system is physically designed on the basis of the UMC 55 nm process and verified by a field programmable gate array verification board. This research is conducted through innovative algorithms to reduce power consumption and the area of the circuit. It can maintain a high accuracy of more than 90% and perform seizure detection every 64 ms. It is expected to provide a new treatment for patients with epilepsy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25010033