Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model

Recently, artificial intelligence (AI) with deep learning (DL) and machine learning (ML) has been extensively used to automate labor-intensive and time-consuming work and to help in prognosis and diagnosis. AI’s role in biomedical and biological imaging is an emerging field of research and reveals f...

Full description

Saved in:
Bibliographic Details
Published inHealthcare (Basel) Vol. 11; no. 1; p. 55
Main Authors A. Mansouri, Rasha, Ragab, Mahmoud
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.12.2022
MDPI
Subjects
Online AccessGet full text
ISSN2227-9032
2227-9032
DOI10.3390/healthcare11010055

Cover

More Information
Summary:Recently, artificial intelligence (AI) with deep learning (DL) and machine learning (ML) has been extensively used to automate labor-intensive and time-consuming work and to help in prognosis and diagnosis. AI’s role in biomedical and biological imaging is an emerging field of research and reveals future trends. Cervical cell (CCL) classification is crucial in screening cervical cancer (CC) at an earlier stage. Unlike the traditional classification method, which depends on hand-engineered or crafted features, convolution neural network (CNN) usually categorizes CCLs through learned features. Moreover, the latent correlation of images might be disregarded in CNN feature learning and thereby influence the representative capability of the CNN feature. This study develops an equilibrium optimizer with ensemble learning-based cervical precancerous lesion classification on colposcopy images (EOEL-PCLCCI) technique. The presented EOEL-PCLCCI technique mainly focuses on identifying and classifying cervical cancer on colposcopy images. In the presented EOEL-PCLCCI technique, the DenseNet-264 architecture is used for the feature extractor, and the EO algorithm is applied as a hyperparameter optimizer. An ensemble of weighted voting classifications, namely long short-term memory (LSTM) and gated recurrent unit (GRU), is used for the classification process. A widespread simulation analysis is performed on a benchmark dataset to depict the superior performance of the EOEL-PCLCCI approach, and the results demonstrated the betterment of the EOEL-PCLCCI algorithm over other DL models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2227-9032
2227-9032
DOI:10.3390/healthcare11010055