SiCRNN: A Siamese Approach for Sleep Apnea Identification via Tracheal Microphone Signals

Sleep apnea syndrome (SAS) affects about 3–7% of the global population, but is often undiagnosed. It involves pauses in breathing during sleep, for at least 10 s, due to partial or total airway blockage. The current gold standard for diagnosing SAS is polysomnography (PSG), an intrusive procedure th...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 23; p. 7782
Main Authors Lillini, Davide, Aironi, Carlo, Migliorelli, Lucia, Gabrielli, Leonardo, Squartini, Stefano
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2024
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24237782

Cover

More Information
Summary:Sleep apnea syndrome (SAS) affects about 3–7% of the global population, but is often undiagnosed. It involves pauses in breathing during sleep, for at least 10 s, due to partial or total airway blockage. The current gold standard for diagnosing SAS is polysomnography (PSG), an intrusive procedure that depends on subjective assessment by expert clinicians. To address the limitations of PSG, we propose a decision support system, which uses a tracheal microphone for data collection and a deep learning (DL) approach—namely SiCRNN—to detect apnea events during overnight sleep recordings. Our proposed SiCRNN processes Mel spectrograms using a Siamese approach, integrating a convolutional neural network (CNN) backbone and a bidirectional gated recurrent unit (GRU). The final detection of apnea events is performed using an unsupervised clustering algorithm, specifically k-means. Multiple experimental runs were carried out to determine the optimal network configuration and the most suitable type and frequency range for the input data. Tests with data from eight patients showed that our method can achieve a Recall score of up to 95% for apnea events. We also compared the proposed approach to a fully convolutional baseline, recently introduced in the literature, highlighting the effectiveness of the Siamese training paradigm in improving the identification of SAS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24237782