Modeling genotypes in their microenvironment to predict single- and multi-cellular behavior

Abstract A cell's phenotype is the set of observable characteristics resulting from the interaction of the genotype with the surrounding environment, determining cell behavior. Deciphering genotype-phenotype relationships has been crucial to understanding normal and disease biology. Analysis of...

Full description

Saved in:
Bibliographic Details
Published inGigascience Vol. 8; no. 3
Main Authors Voukantsis, Dimitrios, Kahn, Kenneth, Hadley, Martin, Wilson, Rowan, Buffa, Francesca M
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.03.2019
Subjects
Online AccessGet full text
ISSN2047-217X
2047-217X
DOI10.1093/gigascience/giz010

Cover

More Information
Summary:Abstract A cell's phenotype is the set of observable characteristics resulting from the interaction of the genotype with the surrounding environment, determining cell behavior. Deciphering genotype-phenotype relationships has been crucial to understanding normal and disease biology. Analysis of molecular pathways has provided an invaluable tool to such understanding; however, typically it does not consider the physical microenvironment, which is a key determinant of phenotype. In this study, we present a novel modeling framework that enables the study of the link between genotype, signaling networks, and cell behavior in a three-dimensional microenvironment. To achieve this, we bring together Agent-Based Modeling, a powerful computational modeling technique, and gene networks. This combination allows biological hypotheses to be tested in a controlled stepwise fashion, and it lends itself naturally to model a heterogeneous population of cells acting and evolving in a dynamic microenvironment, which is needed to predict the evolution of complex multi-cellular dynamics. Importantly, this enables modeling co-occurring intrinsic perturbations, such as mutations, and extrinsic perturbations, such as nutrient availability, and their interactions. Using cancer as a model system, we illustrate how this framework delivers a unique opportunity to identify determinants of single-cell behavior, while uncovering emerging properties of multi-cellular growth. This framework is freely available at http://www.microc.org.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2047-217X
2047-217X
DOI:10.1093/gigascience/giz010