Modeling mesenchymal stromal cell support to hematopoiesis within a novel 3D artificial marrow organoid system

The human bone marrow (BM) microenvironment involves hematopoietic and non-hematopoietic cell subsets organized in a complex architecture. Tremendous efforts have been made to model it in order to analyze normal or pathological hematopoiesis and its stromal counterpart. Herein, we report an original...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 23603 - 13
Main Authors Schell, Bérénice, Zhao, Lin-Pierre, M’Sibih, Inés, Kalogeraki, Maria, Kergaravat, Camille, Lereclus, Emilie, Fenaux, Pierre, Adès, Lionel, Toubert, Antoine, Espéli, Marion, Balabanian, Karl, Clave, Emmanuel, Dulphy, Nicolas, Bisio, Valeria
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-07717-9

Cover

More Information
Summary:The human bone marrow (BM) microenvironment involves hematopoietic and non-hematopoietic cell subsets organized in a complex architecture. Tremendous efforts have been made to model it in order to analyze normal or pathological hematopoiesis and its stromal counterpart. Herein, we report an original, fully-human in vitro 3D model of the BM microenvironment dedicated to study interactions taking place between mesenchymal stromal cells (MSC) and hematopoietic stem and progenitor cells (HSPC) during the hematopoietic differentiation. This fully-human Artificial Marrow Organoid (AMO) model is highly efficient to recapitulate MSC support to myeloid differentiation and NK cell development from the immature CD34 + HSPCs to the most terminally differentiated CD15 + polymorphonuclear neutrophils, CD64 + monocytes or NKG2A-KIR2D + CD57 + NK subset. Lastly, our model is suitable for evaluating anti-leukemic NK cell function in presence of therapeutic agents. Overall, the AMO is a versatile, low cost and simple model able to recapitulate normal hematopoiesis and allowing more physiological drug testing by taking into account both immune and non-immune BM microenvironment interactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-07717-9