Modeling mesenchymal stromal cell support to hematopoiesis within a novel 3D artificial marrow organoid system
The human bone marrow (BM) microenvironment involves hematopoietic and non-hematopoietic cell subsets organized in a complex architecture. Tremendous efforts have been made to model it in order to analyze normal or pathological hematopoiesis and its stromal counterpart. Herein, we report an original...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 23603 - 13 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-025-07717-9 |
Cover
Summary: | The human bone marrow (BM) microenvironment involves hematopoietic and non-hematopoietic cell subsets organized in a complex architecture. Tremendous efforts have been made to model it in order to analyze normal or pathological hematopoiesis and its stromal counterpart. Herein, we report an original, fully-human
in vitro
3D model of the BM microenvironment dedicated to study interactions taking place between mesenchymal stromal cells (MSC) and hematopoietic stem and progenitor cells (HSPC) during the hematopoietic differentiation. This fully-human Artificial Marrow Organoid (AMO) model is highly efficient to recapitulate MSC support to myeloid differentiation and NK cell development from the immature CD34 + HSPCs to the most terminally differentiated CD15 + polymorphonuclear neutrophils, CD64 + monocytes or NKG2A-KIR2D + CD57 + NK subset. Lastly, our model is suitable for evaluating anti-leukemic NK cell function in presence of therapeutic agents. Overall, the AMO is a versatile, low cost and simple model able to recapitulate normal hematopoiesis and allowing more physiological drug testing by taking into account both immune and non-immune BM microenvironment interactions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-025-07717-9 |