Submaximal Exercise Provokes Increased Activation of the Anterior Default Mode Network During the Resting State as a Biomarker of Postexertional Malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by disabling fatigue and postexertional malaise. We developed a provocation paradigm with two submaximal bicycle exercise stress tests on consecutive days bracketed by magnetic resonance imaging, orthostatic int...
Saved in:
| Published in | Frontiers in neuroscience Vol. 15; p. 748426 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
15.12.2021
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-453X 1662-4548 1662-453X |
| DOI | 10.3389/fnins.2021.748426 |
Cover
| Summary: | Background:
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by disabling fatigue and postexertional malaise. We developed a provocation paradigm with two submaximal bicycle exercise stress tests on consecutive days bracketed by magnetic resonance imaging, orthostatic intolerance, and symptom assessments before and after exercise in order to induce objective changes of exercise induced symptom exacerbation and cognitive dysfunction.
Method:
Blood oxygenation level dependent (BOLD) scans were performed while at rest on the preexercise and postexercise days in 34 ME/CFS and 24 control subjects. Seed regions from the FSL data library with significant BOLD signals were nodes that clustered into networks using independent component analysis. Differences in signal amplitudes between groups on pre- and post-exercise days were determined by general linear model and ANOVA.
Results:
The most striking exercise-induced effect in ME/CFS was the increased spontaneous activity in the medial prefrontal cortex that is the anterior node of the Default Mode Network (DMN). In contrast, this region had decreased activation for controls. Overall, controls had higher BOLD signals suggesting reduced global cerebral blood flow in ME/CFS.
Conclusion:
The dynamic increase in activation of the anterior DMN node after exercise may be a biomarker of postexertional malaise and symptom exacerbation in CFS. The specificity of this postexertional finding in ME/CFS can now be assessed by comparison to post-COVID fatigue, Gulf War Illness, fibromyalgia, chronic idiopathic fatigue, and fatigue in systemic medical and psychiatric diseases. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Edited by: George Alexandrakis, University of Texas at Arlington, United States Reviewed by: Keerthana Deepti Karunakaran, Harvard University, United States; Haiqing Huang, University of Pittsburgh, United States |
| ISSN: | 1662-453X 1662-4548 1662-453X |
| DOI: | 10.3389/fnins.2021.748426 |