Fusion of transfer learning with nature-inspired dandelion algorithm for autism spectrum disorder detection and classification using facial features

Autism spectrum disorder (ASD) is a neurologic disorder considered to cause discrepancies in physical activities, social skills, and cognition. There is no specific medicine for treating this disorder; early intervention is critical to improving brain function. Additionally, the lack of a clinical t...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 31104 - 19
Main Authors Elangovan, G., Kumar, N. Jagadish, Shobana, J., Ramprasath, M., Joshi, Gyanendra Prasad, Cho, Woong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.12.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-82299-6

Cover

More Information
Summary:Autism spectrum disorder (ASD) is a neurologic disorder considered to cause discrepancies in physical activities, social skills, and cognition. There is no specific medicine for treating this disorder; early intervention is critical to improving brain function. Additionally, the lack of a clinical test for detecting ASD makes diagnosis challenging. To regulate identification, physicians entertain the children’s activities and growing histories. The human face is employed as a biological signature as it has the potential reflections of the brain. It is utilized as a simpler and more helpful tool for early detection. Artificial intelligence (AI) algorithms in medicinal rehabilitation and diagnosis can help specialists identify various illnesses more successfully. However, owing to its particular heterogeneous symptoms and complex nature, diagnosis of ASD remains to be challenging for investigators. This work presents a Fusion of Transfer Learning (TL) with the Dandelion Algorithm for Accurate Autism Spectrum Disorder Detection and Classification (FTLDA-AASDDC) method. The FTLDA-AASDDC technique detects and classifies autism and non-autism samples using facial images. To accomplish this, the FTLDA-AASDDC technique utilizes a bilateral filter (BF) approach for noise elimination. Next, the FTLDA-AASDDC technique employs a fusion-based TL process comprising three models, namely MobileNetV2, DenseNet201, and ResNet50. Moreover, the attention-based bi-directional long short-term memory (A-BiLSTM) method is used to classify and recognize ASD. Finally, the Dandelion Algorithm (DA) is employed to optimize the parameter tuning process, improving the efficacy of the A-BiLSTM technique. A wide range of simulation analyses is performed to highlight the ASD classification performance of the FTLDA-AASDDC technique. The experimental validation of the FTLDA-AASDDC technique portrayed a superior accuracy value of 97.50% over existing techniques.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-82299-6