Integrating EPSOSA-BP neural network algorithm for enhanced accuracy and robustness in optimizing coronary artery disease prediction

Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elev...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 30993 - 20
Main Authors Li, Chengjie, Wang, Yanglin, Meng, Linghui, Zhong, Wen, Zhang, Chengfang, Liu, Tao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.12.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-82184-2

Cover

More Information
Summary:Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model’s feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-82184-2