Geographical adaptability for optimizing the recommendation of soybean cultivars in the Brazilian Cerrado

Yield multi-location trials associated to geostatistical techniques with environmental covariables can provide a better understanding of G x E interactions and, consequently, adaptation limits of soybean cultivars. Thus, the main objective of this study is understanding the environmental covariables...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 13076 - 12
Main Authors Corbellini, Marcos, Bobek, Daniel Vicente, de Toledo, José Francisco Ferraz, Ferreira, Lenio Urzeda, Santana, Dthenifer Cordeiro, Gilio, Thiago Alexandre Santana, Teodoro, Larissa Pereira Ribeiro, Teodoro, Paulo Eduardo, Tardin, Flavio Dessaune
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-63809-y

Cover

More Information
Summary:Yield multi-location trials associated to geostatistical techniques with environmental covariables can provide a better understanding of G x E interactions and, consequently, adaptation limits of soybean cultivars. Thus, the main objective of this study is understanding the environmental covariables effects on soybean adaptation, as well as predicting the adaptation of soybean under environmental variations and then recommend each soybean cultivar to favorable environments aiming maximize the average yield. The trials were carried out in randomized block design (RBD) with three replicates over three years, in 28 locations. Thirty-two genotypes (commercial and pre-commercial) representing different maturity groups (7.5–8.5) were evaluated in each trial were covering the Edaphoclimatic Region (REC) 401, 402 and 403. The covariables adopted as environmental descriptors were accumulated rainfall, minimum temperature, mean temperature, maximum temperature, photoperiod, relative humidity, soil clay content, soil water avaibility and altitude. After fitting means through Mixed Linear Model, the Regression-Kriging procedure was applied to spacialize the grain yield using environmental covariables as predictors. The covariables explained 32.54% of the GxE interaction, being the soil water avaibility the most important to the adaptation of soybean cultivars, contributing with 7.80%. Yield maps of each cultivar were obtained and, hence, the yield maximization map based on cultivar recommendation was elaborated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-63809-y