Mapping the Global Network of Extracellular Protease Regulation in Staphylococcus aureus

The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters....

Full description

Saved in:
Bibliographic Details
Published inmSphere Vol. 4; no. 5
Main Authors Gimza, Brittney D., Larias, Maria I., Budny, Bridget G., Shaw, Lindsey N.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 23.10.2019
Subjects
Online AccessGet full text
ISSN2379-5042
2379-5042
DOI10.1128/mSphere.00676-19

Cover

More Information
Summary:The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus . A primary function of the extracellular proteases of Staphylococcus aureus is to control the progression of infection by selectively modulating the stability of virulence factors. Consequently, a regulatory network exists to titrate protease abundance/activity to influence the accumulation, or lack thereof, of individual virulence factors. Herein, we comprehensively map this system, exploring the regulation of the four protease loci by known and novel factors. In so doing, we determined that seven major elements (SarS, SarR, Rot, MgrA, CodY, SaeR, and SarA) form the primary network of control, with the latter three being the most powerful. We note that expression of aureolysin is largely repressed by these factors, while the spl operon is subject to the strongest upregulation of any protease loci, particularly by SarR and SaeR. Furthermore, when exploring scpA expression, we find it to be profoundly influenced in opposing fashions by SarA (repressor) and SarR (activator). We also present the screening of >100 regulator mutants of S. aureus , identifying 7 additional factors (ArgR2, AtlR, MntR, Rex, XdrA, Rbf, and SarU) that form a secondary circuit of protease control. Primarily, these elements serve as activators, although we reveal XdrA as a new repressor of protease expression. With the exception or ArgR2, each of the new effectors appears to work through the primary network of regulation to influence protease production. Collectively, we present a comprehensive regulatory circuit that emphasizes the complexity of protease regulation and suggest that its existence speaks to the importance of these enzymes to S. aureus physiology and pathogenic potential. IMPORTANCE The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Citation Gimza BD, Larias MI, Budny BG, Shaw LN. 2019. Mapping the global network of extracellular protease regulation in Staphylococcus aureus. mSphere 4:e00676-19. https://doi.org/10.1128/mSphere.00676-19.
ISSN:2379-5042
2379-5042
DOI:10.1128/mSphere.00676-19