Automated detection of Pi 2 pulsations using wavelet analysis: 1. Method and an application for substorm monitoring

Wavelet analysis is suitable for investigating waves, such as Pi 2 pulsations, which are limited in both time and frequency. We have developed an algorithm to detect Pi 2 pulsations by wavelet analysis. We tested the algorithm and found that the results of Pi 2 detection are consistent with those ob...

Full description

Saved in:
Bibliographic Details
Published inEarth, planets, and space Vol. 50; no. 9; pp. 773 - 783
Main Authors Nosé, M., Iyemori, T., Takeda, M., Kamei, T., Milling, D. K., Orr, D., Singer, H. J., Worthington, E. W., Sumitomo, N.
Format Journal Article
LanguageEnglish
Published Tokyo Terra 01.01.1998
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1880-5981
1343-8832
1880-5981
DOI10.1186/BF03352169

Cover

More Information
Summary:Wavelet analysis is suitable for investigating waves, such as Pi 2 pulsations, which are limited in both time and frequency. We have developed an algorithm to detect Pi 2 pulsations by wavelet analysis. We tested the algorithm and found that the results of Pi 2 detection are consistent with those obtained by visual inspection. The algorithm is applied in a project which aims at the nowcasting of substorm onsets. In this project we use real-time geomagnetic field data, with a sampling rate of 1 second, obtained at mid- and low-latitude stations (Mineyama in Japan, the York SAMNET station in the U.K., and Boulder in the U.S.). These stations are each separated by about 120° in longitude, so at least one station is on the nightside at all times. We plan to analyze the real-time data at each station using the Pi 2 detection algorithm, and to exchange the detection results among these stations via the Internet. Therefore we can obtain information about substorm onsets in real-time, even if we are on the dayside. We have constructed a system to detect Pi 2 pulsations automatically at Mineyama observatory. The detection results for the period of February to August 1996 showed that the rate of successful detection of Pi 2 pulsations was 83.4% for the nightside (18-06MLT) and 26.5% for the dayside (06-18MLT). The detection results near local midnight (20-02MLT) give the rate of successful detection of 93.2%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1880-5981
1343-8832
1880-5981
DOI:10.1186/BF03352169