Parabolic Molecules

Anisotropic decompositions using representation systems based on parabolic scaling such as curvelets or shearlets have recently attracted significant attention due to the fact that they were shown to provide optimally sparse approximations of functions exhibiting singularities on lower dimensional e...

Full description

Saved in:
Bibliographic Details
Published inFoundations of computational mathematics Vol. 14; no. 2; pp. 299 - 337
Main Authors Grohs, Philipp, Kutyniok, Gitta
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.04.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-3375
1615-3383
DOI10.1007/s10208-013-9170-z

Cover

More Information
Summary:Anisotropic decompositions using representation systems based on parabolic scaling such as curvelets or shearlets have recently attracted significant attention due to the fact that they were shown to provide optimally sparse approximations of functions exhibiting singularities on lower dimensional embedded manifolds. The literature now contains various direct proofs of this fact and of related sparse approximation results. However, it seems quite cumbersome to prove such a canon of results for each system separately, while many of the systems exhibit certain similarities. In this paper, with the introduction of the notion of parabolic molecules , we aim to provide a comprehensive framework which includes customarily employed representation systems based on parabolic scaling such as curvelets and shearlets. It is shown that pairs of parabolic molecules have the fundamental property to be almost orthogonal in a particular sense. This result is then applied to analyze parabolic molecules with respect to their ability to sparsely approximate data governed by anisotropic features. For this, the concept of sparsity equivalence is introduced which is shown to allow the identification of a large class of parabolic molecules providing the same sparse approximation results as curvelets and shearlets. Finally, as another application, smoothness spaces associated with parabolic molecules are introduced providing a general theoretical approach which even leads to novel results for, for instance, compactly supported shearlets.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-013-9170-z