Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1

Objective To identify brain regions, cell types, or both that generate abnormal electrical discharge in tuberous sclerosis complex (TSC). Here we examined excitatory and inhibitory synaptic currents in human tissue samples obtained from a TSC patient with no discernible cortical tubers and acute neo...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 61; no. 2; pp. 139 - 152
Main Authors Wang, Yanling, Greenwood, Joel S. F., Calcagnotto, Maria Elisa, Kirsch, Heidi E., Barbaro, Nicholas M., Baraban, Scott C.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2007
Willey-Liss
Subjects
Online AccessGet full text
ISSN0364-5134
1531-8249
DOI10.1002/ana.21058

Cover

More Information
Summary:Objective To identify brain regions, cell types, or both that generate abnormal electrical discharge in tuberous sclerosis complex (TSC). Here we examined excitatory and inhibitory synaptic currents in human tissue samples obtained from a TSC patient with no discernible cortical tubers and acute neocortical brain slices from a mouse featuring synapsin‐driven conditional deletion of a TSC1 gene. These studies were designed to assess whether TSC gene inactivation alters excitability. Methods We used visualized patch‐clamp (human and mouse) and extracellular field (mouse) recordings. Additional mice were processed for immunohistochemistry or Western blot analysis. Results Detailed anatomic studies in brain tissue sections from synapsin‐TSC1 conditional knock‐out mice failed to uncover gross anatomic defects, loss of lamination, or frank tuber formation. However, regions of abnormal and potentially activated neocortex were shown using antibodies to nonphosphorylated neurofilaments (SMI‐311) and immediate early genes (c‐Fos). Extracellular recordings from neocortical slices, examining synaptic activity in these regions, demonstrated clear differences in excitability between conditional knock‐out and age‐matched control mice. Whole‐cell patch‐clamp recordings demonstrated excitatory synaptic currents with strikingly long duration and epileptiform discharge patterns, similar to waveforms observed in our human tissue samples. These events were 1‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionate (AMPA) receptor mediated and were most prominent in neocortex. Normal‐appearing inhibitory postsynaptic currents (human) and intrinsic neuronal firing patterns (mouse) were also recorded. Interpretation This combination of human and mouse tissue studies suggests, for the first time, that synaptic excitation is altered in a direction that favors seizure generation in TSC brain tissue regardless of cortical tubers. Ann Neurol 2007
Bibliography:Tuberous Sclerosis Alliance
ark:/67375/WNG-WVRP0ND6-N
istex:1E1B9D8905DBC6F2744E27FE6A9D28040164D465
ArticleID:ANA21058
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Case Study-2
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ISSN:0364-5134
1531-8249
DOI:10.1002/ana.21058