Fast and selective ring-opening polymerizations by alkoxides and thioureas
Ring-opening polymerization of lactones is a versatile approach to generate well-defined functional polyesters. Typical ring-opening catalysts are subject to a trade-off between rate and selectivity. Here we describe an effective catalytic system combining alkoxides with thioureas that catalyses rap...
Saved in:
Published in | Nature chemistry Vol. 8; no. 11; pp. 1047 - 1053 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1755-4330 1755-4349 1755-4349 |
DOI | 10.1038/nchem.2574 |
Cover
Summary: | Ring-opening polymerization of lactones is a versatile approach to generate well-defined functional polyesters. Typical ring-opening catalysts are subject to a trade-off between rate and selectivity. Here we describe an effective catalytic system combining alkoxides with thioureas that catalyses rapid and selective ring-opening polymerizations. Deprotonation of thioureas by sodium, potassium or imidazolium alkoxides generates a hydrogen-bonded alcohol adduct of the thiourea anion (thioimidate). The ring-opening polymerization of
L
-lactide mediated by these alcohol-bonded thioimidates yields highly isotactic polylactide with fast kinetics and living polymerization behaviour, as evidenced by narrow molecular weight distributions (
M
w
/
M
n
< 1.1), chain extension experiments and minimal transesterifications. Computational studies indicate a bifunctional catalytic mechanism whereby the thioimidate activates the carbonyl of the monomer and the alcohol initiator/chain end to effect the selective ring-opening of lactones and carbonates. The high selectivity of the catalyst towards monomer propagation over transesterification is attributed to a selective activation of monomer over polymer chains.
By simply deprotonating a neutral hydrogen-bond donor thiourea it is possible to generate a class of highly efficient and tunable thioimidates that can simultaneously activate a pro-nucleophile and an electrophile. These bifunctional thioimidates exhibit fast kinetics and high selectivity for ring-opening polymerizations of cyclic lactones and carbonates. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1755-4330 1755-4349 1755-4349 |
DOI: | 10.1038/nchem.2574 |